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Abstract. This study presents an optimization framework for automotive sus-

pension systems using Genetic Algorithms (GA) to improve ride comfort and 

handling performance. Traditional suspension tuning relies on trial-and-error 

methods, which are time-consuming and suboptimal. The proposed method ad-

dresses these limitations by optimizing key suspension parameters—stiffness 

and damping—using GA, which mimics natural selection processes. The 

framework is applied to a quarter-car model representing the vertical dynamics 

of a vehicle. GA optimizes the parameters based on performance metrics such 

as minimizing body displacement and acceleration. Simulations using sinusoi-

dal and step road profiles demonstrated significant improvements, with reduc-

tions of 8,1% and 22,8% in displacement and 5,6% and 66,2% in acceleration 

for sinusoidal and step disturbances, respectively. These results highlight GA’s 

potential to enhance suspension tuning, outperforming conventional methods. 

Future work will expand this approach to multi-objective optimization and 

more complex vehicle models.  
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1 Introduction 

The vehicle suspension system has a direct influence on performance, stability and 

comfort, for both vehicle and passengers. Usually consisting of springs and dampers, 

its characteristics vary depending on the type of vehicle and road, requiring specific 

optimizations to ensure good performance and an optimal driving experience. The 

complexity of optimizing these suspensions arises from the interaction between mul-

tiple variables, being key two parameters, stiffness and damping. Traditionally, the 

optimization of these parameters has relied on expert knowledge and trial-and-error 

methods, which can be time-consuming, demand significant resources and cannot 

ensure a global optimal solution. However, new modeling and optimization technolo-
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gies, such as genetic algorithms, simplify this process by identifying which are the 

best parameters for different kinds of scenarios, such as sports driving, comfortable 

driving or off-road conditions. We propose an optimization framework based on Ge-

netic Algorithms (GA), a powerful search heuristic inspired by the principles of natu-

ral selection and genetics [1]. The framework aims to optimize the suspension param-

eters-stiffness and damping- for automotive vehicles, enhancing both ride comfort and 

handling performance. Albadr et al. [2] highlighted the importance of genetic algo-

rithms and its efficiency on optimizing systems, which can be applied in optimizing 

vehicle suspensions systems. 

2 Numerical Model 

Although exists many mathematical models to represent vertical movement on auto-

motive suspension, the quarter car model is the simplest model according to [3]. This 

model simplifies the whole problem by analyzing each wheel isolated. A representa-

tion of this model is presented in Fig. 1. 

 
Fig. 1. Quarter Car model [3] 

 

 It is represented by two masses, a sprung mass, 𝑚𝑠 and an unsprung mass, 𝑚𝑢. The 

movement of each mass is represented by, 𝑥𝑠, for the sprung mass and 𝑚𝑢 for the 

unsprung mass, while y represents the vertical movement caused by the road profile. 

The tire stiffness is taken in account represented by, 𝑘𝑢, which connects the unsprung 

mass to the ground. The sprung mass represents one quarter of the total vehicle mass, 

while the unsprung mass represents one of the vehicle wheels. A spring with stiffness, 
𝑘𝑠,  and a damper with damping coefficient, 𝑐𝑠, supports the sprung mass. 

The equations of motion that describe the behavior of this model, as referenced by  

Jazar and Marzbani [3], are equations (1) and (2): 

 

 𝑚𝑠�̈�𝑠 = −𝑘𝑠(𝑥𝑠 − 𝑥𝑢) − 𝑐𝑠(�̇�𝑠 − �̇�𝑢) (1) 

 𝑚𝑢�̈�𝑢 = 𝑘𝑠(𝑥𝑠 − 𝑥𝑢) + 𝑐𝑠(�̇�𝑠 − �̇�𝑢) − 𝑘𝑢(𝑥𝑢 − 𝑦) (2) 
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With this numerical model it is possible to analyze the vertical movement of the 

suspension and optimize its parameters. Due to the simplicity of this model, it does 

not require high computational resources, which makes a good option for optimiza-

tion. 

3 Optimization 

Optimization can be defined as the science that determines the best solution for a 

particular mathematical problem that usually represents a real physical system. The 

objective is to identify the ideal combination of variables that minimize, or in some 

cases maximize, a determined objective function f(x)[4]. According to Fletcher [1] the 

definition of the optimum criteria, development of algorithms, the study of the struc-

ture and computational experiments are part of problem optimization. 

 

Simple optimization problems can be represented as [1]: 

 

Minimize     𝑓(𝑥) 

 

Subject to    {
 ℎ𝑖(𝑥) = 0, 𝑖 =  1, 2, . . . , 𝑚

𝑔𝑗(𝑥) ≤ 0, 𝑗 =  1, 2, . . . , 𝑟

𝑥 ∈  Ω

 

 

In this formulation 𝑥  is an “ 𝑛 ” dimensional vector with unknown values,  

𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] and {𝑓, ℎ𝑖  𝑒 𝑔𝑗} are real-valued functions that depend on the val-

ues of 𝑥.  The numerical set Ω represents all 𝑥 possible values inside the imposed 

search bounds. 

3.1 Gradient based methods 

Some of the classical optimization methods are gradient based methods, where 

through an iterative process a search for the minimum value of function f(x) is made. 

These methods start from an initial point, either chosen arbitrarily or by the user, and 

generate a sequence of approximate solutions. The search direction is determined by 

the descent direction of the gradient in the objective function, aiming to find a point 

where f(x) value is minimum. A simple method is the gradient descent method, which 

follows the opposite direction of the gradient [5].The accuracy of this method depends 

on the step size between iterations, which must be adjusted to avoid premature con-

vergence to local minima. 

Other methods like Newton’s Method use the Hessian matrix to approximate the 

objective function as quadratic, enabling more efficient descent directions, although, 

it may not guarantee fast convergence for non-quadratic functions [6]. Quasi Newton 

methods improve upon this by iteratively estimating the Hessian matrix, reducing 

computational cost in large-scale problems, but still requiring matrix storage [4]. 

Meanwhile, the Conjugate Gradient Method avoids second-derivative calculations, 



4 

combining gradients in different directions, making it particularly effective for quad-

ratic functions while using less computational storage [4]. 

3.2 Meta-Heuristics Methods 

Meta-heuristic based methods explore large-scale solutions and escape local minima 

more efficiently than gradient based methods. These methods add an aleatory compo-

nent in the search of the best solution that minimizes f(x). Methods such as evolution-

ary algorithms are widely used to optimize complex, real world problems. An exam-

ple of it is the Genetic Algorithm, that simulates Darwin’s process of natural evolu-

tion [7]. The algorithm begins with an initial population of solutions and, in each 

iteration, generates a new population based on genetic operators such as crossover and 

mutation, until it finds a global optimal solution. 

Genetic Algorithms 

 

According to Alhijawi and Awajan [8] a simple genetic algorithm starts with an initial 

population of individuals, each one representing a possible solution to the problem. 

These individuals have chromosomes composed of genes, any of the individuals are a 

possible solution of the problem. For example, in binary encoding, a chromosome 

could look like, x = [10011], where each bit represents a gene. The initial population 

is randomly generated, allowing the algorithm to explore different regions of the 

search space based on the imposed restrictions. The algorithm iterates through genera-

tions, selecting individuals based on their performance in a fitness function that eval-

uates how good each solution is. The individuals with best ranking on the fitness 

function, in each generation, are more likely to be selected to exchange information 

(genes), with other individuals through crossover and mutation process which will 

generate more individuals like the best ones of the last generation, obtaining better 

solutions in each generation. This fitness function is crucial, as it determines which 

individuals are more likely to reproduce and pass on their genetic information to the 

next generation. In Fig. 2 is presented a flow chart representing the operation of a 

simple genetic algorithm. 
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Fig. 2. Flow Chart of a simple Genetic Algorithm [2] 

Genetic Operators 

Selection: This operator prepares the individuals for reproduction, choosing them 

based on their fitness scores. Higher fitness individuals are more likely to be selected, 

but even weaker individuals can be chosen occasionally to maintain diversity. Various 

selection methods can be used, such as probabilistic selection, where fitter individuals 

have a greater chance, or stochastic selection, which ensures a wide search by select-

ing individuals from different areas of the search space. 

Crossover: Once individuals are selected, crossover is used to create new individuals 

by combining genetic material from two parents. In a single-point crossover, a ran-

dom point on the chromosome is chosen, and the genetic material is swapped between 

the two parents to generate two new individuals. A double-point crossover works 

similarly but swaps genes between two random points, increasing diversity. 

Mutation: During mutation, random changes are introduced to some genes in the new 

individuals to maintain diversity in the population. It consists in swapping one or 

more genes randomly in a chromosome, which helps the algorithm avoid getting stuck 

in local optima by exploring new areas of the search space. The mutation rate is typi-

cally kept low to avoid turning the algorithm into a random search. 

Replacement Techniques: After generating a new set of individuals, the algorithm 

must decide which individuals to retain for the next generation. One approach is to 
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replace the entire population with the offspring, focusing on the assumption that new 

individuals will improve overall fitness. Alternatively, some of the best individuals 

from the previous generation can be retained, or the worst individuals in the new gen-

eration can be discarded in favor of those generated by crossover and mutation. 

4 Case Study 

The vehicle model was optimized according to different objective functions, one be-

ing to minimize acceleration RMS (Root Mean Square) value of the sprung mass and 

the other being minimize displacement RMS value of the sprung mass. Additionally, 

two types of excitations were assessed as road profiles: sinusoidal and step profiles.  

4.1 Road Inputs  

To analyze the vertical movement of the vehicle suspension, just like presented in [9], 

the first excitation used was a step road with a pulse of 0,05 m as depicted in Fig. 3. 

The vehicle test speed used was 50 km/h. 

 
Fig. 3. Step-road profile from Simulink 

 

The second excitation used was a sinusoidal function that depends on the vehicle 

velocity 𝑣𝑐𝑎𝑟  , with an amplitude of 0,01 m and wavelength, 𝜆, of 5 m. The sinusoidal 

road profile can then be modelled as per equation (3).  

 

Time is represented by the variable 𝑡, in seconds, and 𝐴 is the amplitude of the si-

nusoidal wave in meters.  

 𝑦 = 𝐴 ∗ sin (
𝑣𝑐𝑎𝑟 3,6⁄

𝜆
∙ 2𝜋 ∙ 𝑡)  [𝑚] (3) 
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4.2 Vehicle Dynamics Modelling  

The properties of the quarter car model chosen are presented in Table 1, and refer to a 

real car, a Mercedes-Benz AMG SLC43, adapted to a quarter car model [9]. 

Table 1. Quarter car model properties 

Propriedade Simbologia Valor 

Sprung mass  𝑚𝑠 395 kg 

Unsprung mass 𝑚𝑢 38 kg 

Spring stiffness  k𝑠 29300 N/m 

Damping coefficient  𝑐𝑠 3000 Ns/m 

Tire stiffness  𝑘𝑡 290000 N/m 

4.3 Optimization problem 

The definition of the optimization problem with the objective of the optimization, 

minimize vertical acceleration and displacement, respectively, and the restrictions are 

presented as: 

 

Objective Function #1 

𝑚𝑖𝑛
k𝑠,c𝑠

 𝑅𝑀𝑆 (�̈�)  

𝑠. 𝑡.  {
10000 N/m ≤   k𝑠  ≤  200000 N/m

500 Ns/m ≤  c𝑠 ≤  10000 Ns/m
 

  

Objective Function #2 

𝑚𝑖𝑛
k𝑠,c𝑠

 𝑅𝑀𝑆 (𝑥)  

𝑠. 𝑡.  {
10000 N/m ≤   k𝑠  ≤  200000 N/m

500 Ns/m ≤  c𝑠 ≤  10000 Ns/m
 

 

A script was created in MATLAB®, which utilized the software’s own native li-

braries “Global optimization Toolbox”, to solve the problem with genetic algorithm. 

The section of the script related to the implementation of the genetic algorithm is now 

presented and explained. 

 

1 problem.solver  = 'ga()'; 

2 problem.fitnessfcn = @(x)V1_quarter_car_funcao([x(1) x(2)]);   

3 problem.nvars = 2; 

4 problem.lb=[10000,500]; 

5 problem.ub=[200000,10000]; 

6 problem.options = optimoptions('ga','PopulationSize',… 

7   popsz,'MaxGenerations',maxgen, 'FunctionTolerance',… 

8   tol, 'CrossoverFraction',xfrac, 'EliteCount',… 

9   mutfrac*popsz,'SelectionFcn',… 

10  ,{@selectiontournament,2},'PlotFcn',…  

11  {@gaplotbestf, @gaplotstopping}); 
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The genetic algorithm method is selecting using the function 'ga( )'.  In ‘prob-

lem.fitnessfcn’ the input is a Simulink model representative of the quarter car model, 

which in this case will be the fitness function that evaluate and rank the individuals of 

each generations and provide the best solution to the problem. The section ‘prob-

lem.nvars’ defines the number of variables in the problem, in this case are k𝑠 and c𝑠. 

The ‘problem.lb’ and ‘problem.ub’ specify the lower and upper bounds of the varia-

bles within the search space, respectively. The first argument in each corresponds to 

the restrictions for k𝑠  and the second argument for c𝑠 . Finally ‘problem.options’ is 

used to define some options about the algorithm in use, which can be changed by the 

user. 

The genetic algorithm parameters used in this study are presented in Table 2. 

Table 2. Genetic Algorithm Parameters 

Property Value 

Population size 80 

Crossover 70 % 

Mutation 10 %  

Máx number of generations 100 

Tolerance 0,0001  [𝑚 𝑜𝑟 𝑚 𝑠2⁄ ] 

 

The choice of these parameters directly influences the effectiveness of the algo-

rithm. Mitchell [10] outlines several studies using genetic algorithms, indicating that 

the optimal parameters include a population size between 50 and 100 individuals, a 

crossover rate between 60 and 90%, and a recommended mutation rate below 10%. A 

high crossover rate means that this percentage of the population from the previous 

generation exchanges information, generating new individuals similar to the existing 

ones. In regions where the algorithm has found good solutions, more points are 

formed. Those that perform better in the fitness function survive and are selected to 

form new points in the next generation, contributing to the algorithm’s convergence. 

Maintaining a low mutation fraction allows the algorithm to escape local minima by 

randomly altering a portion of the information, which promotes exploration of new 

areas in the search space and preserves genetic diversity. This prevents the algorithm 

from becoming too random, which could otherwise difficult convergence. 

 

5 Results and discussions 

In this chapter are presented and discussed the results obtained in the optimization of 

the quarter car model for both excitations, first step-road and next sinusoidal function. 

In Table 3 are presented the results obtained for step-road optimization. 

 

 



9 

Table 3. Quarter car model optimization through step-road excitation 

 

As we can observe in both optimizations-acceleration and displacement-the spring 

stiffness parameter is relatively close to the minimum limit set in the problem defini-

tion. This suggests that the drastic reduction of this parameter contributes significant-

ly to minimizing both acceleration and displacement. The proximity of this parameter 

to the minimum constraint value indicates that a better solution could potentially be 

achieved if this value were further reduced. However, extremely low values might not 

be physically feasible for automotive suspensions, as components with such charac-

teristics might not exist.  

In Fig. 4 it is presented the difference between the acceleration value throughout 

the simulation in the original (OEM) and optimized model for step road excitation. 

 

Fig. 4. Comparison of the acceleration OEM vs Optimized (step) 

The difference between the highest peak of both models (original and optimized) is 

easily detected. The optimized model reaches a maximum vertical acceleration just 

below 2 𝑚 𝑠2⁄  against the almost 6 𝑚 𝑠2⁄  in the original model. Although the system 

with the original parameters reaches equilibrium sooner, around 1,5 seconds com-

pared to the 4,5 seconds for the optimized system, the latter shows a better RMS re-

sponse in reducing vertical acceleration. The optimized model demonstrates a 66,21% 

improvement over the original.  

 OEM 𝑹𝑴𝑺 (�̈�) 𝑹𝑴𝑺 (𝒙) 
𝑹𝑴𝑺 (�̈�) [𝒎 𝒔𝟐⁄ ] 1,1032 0,3728 - 

𝑹𝑴𝑺 (𝒙) [𝒎] 0,00987 - 0,00762 

𝐤𝒔 [𝑵 𝒎⁄ ] 29300 10000 10194 

𝐜𝒔 [𝑵𝒔 𝒎⁄ ] 3000 516 2461 

Improvement [%] - 66,21 22,79 
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In Fig. 5 it is presented the difference between the displacement value throughout 

the simulation in the original (OEM) and optimized model for the step road excita-

tion. 

 

Fig. 5. Comparison of the displacement OEM vs Optimized (step) 

Once again, the difference between the maximum values obtained in each system, 

original and optimized, is clear. In the original configuration, the maximum displace-

ment of the sprung mass was around 0,05 m, while in the optimized model, the max-

imum displacement is slightly above 0,035 m, representing a reduction of approxi-

mately 30% in the maximum displacement value. It is also observed that, although 

both systems return to equilibrium at almost the same time, around 2 seconds after the 

excitation, the movement of the sprung mass in the optimized system is much 

smoother allowing the RMS response of the sprung mass displacement to be lower 

than in the original configuration. In Table 4Table 3 are presented the results ob-

tained for sinusoidal excitation optimization. 

Table 4. Quarter car model optimization through sinusoidal excitation 

 

 As we can observe in the acceleration optimization the spring stiffness value coin-

cides once again with lower bound limit for this parameter, while the spring damping 

coefficient value rises slightly to achieve the best solution. This suggests that lower-

ing the spring stiffness has more impact in minimizing acceleration for the sinusoidal 

     OEM       𝑹𝑴𝑺 (�̈�) 𝑹𝑴𝑺 (𝒙) 
𝑹𝑴𝑺 (�̈�) [𝒎 𝒔𝟐⁄ ] 0,07294 0,06885 - 

𝑹𝑴𝑺 (𝒙) [𝒎] 0,007808 - 0,007172 

𝐤𝒔 [𝑵 𝒎⁄ ] 29300 10000 199994 

𝐜𝒔 [𝑵𝒔 𝒎⁄ ] 3000 4836 8936 

Improvement [%] - 5,61 8,14 
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excitation. In the displacement optimization the spring stiffness value is relatively 

close with the upper bound limit of this parameter as well as the damping coefficient. 

For minimizing the displacement of the sprung mass, both parameters have a high 

impact on solution. In Fig. 6 it is presented the difference between the acceleration 

value throughout the simulation in the original (OEM) and optimized model for the 

sinusoidal excitation. 

 

Fig. 6. Comparison of the acceleration OEM vs Optimized (sinusoidal) 

This time, although the optimized model initially shows a higher peak acceleration 

of the sprung mass, around 0,3 𝑚 𝑠2⁄  compared to approximately 0,25 𝑚 𝑠2⁄  in the 

original configuration, the optimized model quickly adjusts to the sinusoidal excita-

tion conditions, reducing the downward overshoot and providing a 5,61% reduction in 

the RMS response of the sprung mass acceleration to this excitation. 

 In Fig. 7 it is presented the difference between the displacement value through-

out the simulation in the original (OEM) and optimized model for the sinusoidal exci-

tation. 
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Fig. 7. Comparison of the displacement OEM vs Optimized (sinusoidal) 

In this case the difference between the peak displacements of the sprung mass is not so 

clear. However, the maximum displacement in the original configuration reaches 0,012 m, 

while in the optimized model, the maximum displacement is around 0,01 m. The optimized 

system provided an 8,14% improvement in the RMS response of the sprung mass displacement 

compared to the original configuration, contributing to a smoother ride. 

6 Conclusions 

A quarter car model representing a vehicle suspension system was successfully opti-

mized with genetic algorithms. Significant improvements in the performance were 

presented in response to the proposed excitations. Something that could have been 

done is conducting laboratory tests on the suspension systems under study to corrobo-

rate the results obtained from the optimization. It was found that the effectiveness of 

the suspension parameter optimization process directly depends on the variable being 

optimized. 

For the step road excitation, the spring stiffness had more direct impact to mini-

mize both RMS responses on acceleration and displacement, where the recommended 

values coincide with the lower boundaries of the optimization problem. The damping 

coefficient was slightly lower for the displacement optimization. For the acceleration 

optimization the damping coefficient was lowered until the lower boundary value pre-

established on algorithm parameters. 

For the sinusoidal function excitation, although the spring stiffness had a bigger 

difference in the optimized models in relation to the original characteristics, the in-

crease of damping coefficient allowed the optimization of the system. So, in this case 

both parameters had impact on the optimization, for both excitations, with more em-

phasis in spring stiffness variation. On acceleration optimization the spring stiffness 
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value recommended is close to the minimum limit of this parameter established on the 

algorithm properties. But to optimize the model minimizing the displacement of the 

sprung mass, it is indicated a bigger spring stiffness value relatively close to the max-

imum limit of the parameter. 

It is important to keep in mind that, although the parameter values in the optimized 

systems can coincide with the constraint values and better solutions could exist, some 

mechanical elements for suspension systems with that characteristics might not exist 

in real life. 

Future work will focus on the development of more complex models and consider 

multi-objective optimization of the system. Analysis of other types of excitations, 

such as optimizing suspension parameters in the context of motorsport can be possible 

as well. 
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