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An iterative method for the identification of joints has been presented; it does not
need to invert any matrices, although it requires the responses at the joint co-
ordinates. The identification of the frequencies where the condition number is
minimum proved to be very effective, with significant improvements in the results.
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Abstract
The identification of the dynamic properties of joints is a very important subject in
structural dynamics. However, classic uncoupling methods are often difficult to
apply. Here, an iterative technique is proposed, trying to circumvent the ill-
conditioning problems that arise due to any small perturbations existing in the
experimental data. Various cases are discussed to illustrate the technique,
including situations where it is not possible to take measurements on the joint
itself; the results are compared with the ones obtained with other methods.

To characterize the dynamic behavior of a joint, one uses the dynamic stiffnesses Z
and the FRFs H of the various substructures, including the one representing the
joint. Our complex structure C is formed by the coupling of two substructures, A
and B (the joint) (Fig. 1). Substructure A is assumed as easy to model numerically;
the internal co-ordinates are designated by i and those common to B are j, which

are often difficult to measure. No internal co-ordinates are considered in B.

Theoretical formulation

Figure 1 : Coupling of substructures A and B, to form structure C

C A B= +Z Z Z (1)

Rewriting the r.h.s. of eq. (1) and inverting both sides, yields
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= +H I H Z H (2)

Explicitly writing (2) in terms of submatrices involving co-ordinates i and j, leads to
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which, after various manipulations, gives
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which may be rewritten as
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Eq. (6) exhibits the “classic” format of the iterative methods for the solution of linear
matrix equations , whose general form is the following one

( 1) ( )k k+ = +X GX P (7)
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Let us determine the dynamic stiffness of substructure B, , using the information
obtained numerically from substructure A and the measurements taken at co-
ordinates i of structure C. The dynamic stiffness may be written as:

BZ

CZ

Pre-multiplying the first element of the first row of eq. (4) by and post-

multiplying by ,

( )Aij
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H
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+

H

This process converges if and only if the spectral radius of the iteration matrix is
less than 1 ( ). From (4) one can use the other three elements and proceed
similarly, obtaining three more different formulations for the dynamic stiffness

Once is found, a regression using a least squares calculation is performed to
find the stiffness and mass associated to each element, of the form . One
of the problems of this process is the shortage of frequencies where the spectral
radius of the iteration matrix G is less than 1. The results of for eq. (10) are quite
reasonable, in spite of considerably high perturbations in some frequency bands.
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Analysis of the condition number

Figure 2 : Coupling of substructures A1, B and A2 .
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Simulation study

Let us consider a coupling between two beams, connected by a joint element, as in
Figure 2. Structure C is composed by A1, B and A2.
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From eq. (10) is clear that both matrices G and P include the term ,

responsible for some numerical instability. Thus, a function is defined as

where t is an amplifier of the condition effect. The local minima of represent the
frequency range where the problem is better conditioned. Thus, it is advisable to
choose only those frequencies; exhibits a great dispersion; so, to facilitate the
choice of frequencies, a regression has been carried out with the MatLab® function:

vwhere is a weighting parameter varying between 0 and 1. To determine the local
minima one choses the frequency range where

To simulate the experimental errors, an amplitude independent error is added:

where g is the noise level (3% in this case) and is a MatLab® function
that represents a normal distribution with zero mean and standard deviation 1.

Results

The chosen parameters are: , and . Figure 3 represents

, and the chosen frequencies, identified by the vertical grey bands.

Figure 4:         from eq.(10), with the indication of the 
frequency bands with minimum condition values

After the dynamic stiffness has been evaluated, with the calculation of the mass
and stiffness matrices of substructure B, the receptance .

Figure 5:         from eq.(10), with the frequency 
bands with minimum condition values

Figure 6:        ; blue: with all the points of fig. 4; red : with 
all the points of fig. 5; black: exact solution


