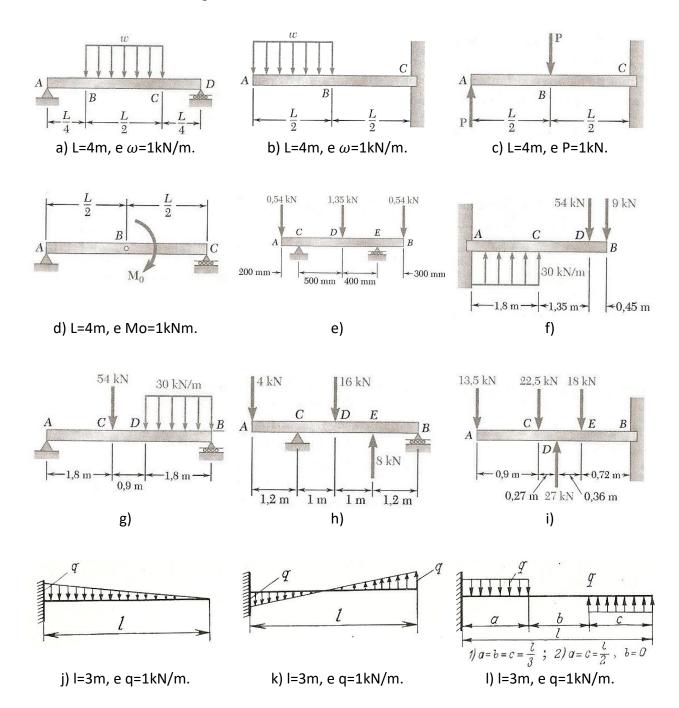


RESISTÊNCIA DOS MATERIAIS

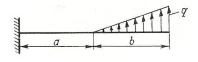
Índice

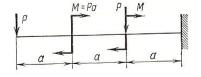

1.	Forças internas em vigas	2
1.1		
1.2	Vigas Gerber	4
2.	Elasticidade linear	5
2.1	Carregamento Axial - Tensão normal	5
2.2	-	
2.3	Tensão normal e tensão de corte	9
2.4	Lei de Hooke	12
2.5	Efeito da Temperatura	14
2.6	Problemas estaticamente indeterminados	15
2.7	Lei de Hooke generalizada	19
2.8	Concentração de tensões	22
2.9	Estado Triaxial – Tensões e Direções Principais	22
2.1	0 Estado Biaxial – Circulo de Mohr	23
3.	Torção	24
3.1	-	
3.2	Concentração de tensões	27
3.3	Veios de transmissão	27
3.4	Problemas híper-estáticos	28
3.5	Secções não circulares	29
3.6	Torção composta	30
3.7	Gráfico de concentração de tensões	32
4.	Flexão	32
4.1	Flexão Pura	32
4.2	Flexão Simples	33
4.3	Flexão Composta	35
4.4	Flexão Desviada	37
4.5	Equação da Linha Elástica	40
4.6	Flexão Composta com Torção	42
5.	Critérios de cedência	44
6.	Instabilidade estrutural - Flambagem	46
7.	Referências	

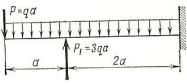
RESISTÊNCIA DOS MATERIAIS

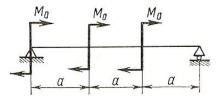
1. Forças internas em vigas

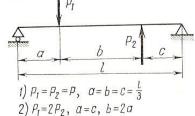
1.1 Vigas simples

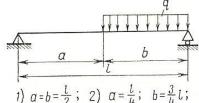

1.1.1 Calcule as reações dos apoios, trace os diagramas dos esforços cortantes, esforços normais e momentos fletores das seguintes estruturas.


fernandobatista.net Pág. 2 de 48

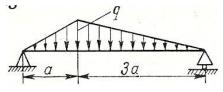

RESISTÊNCIA DOS MATERIAIS


m) a=b=3m, e q=1kN/m.

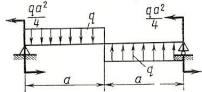

n) a=1m, e p=1kN.


o) a=1m, e q=1kN/m.

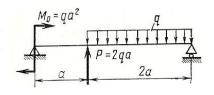
p) a=1m, e Mo=1kNm.

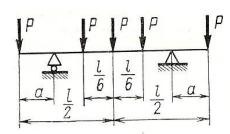


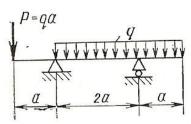
q) l=3m, e p=1kN.

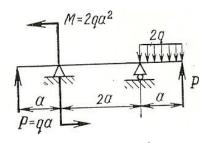


3) $a = \frac{3}{4}l$, $b = \frac{l}{4}$


r) l=2m, e q=1kN/m

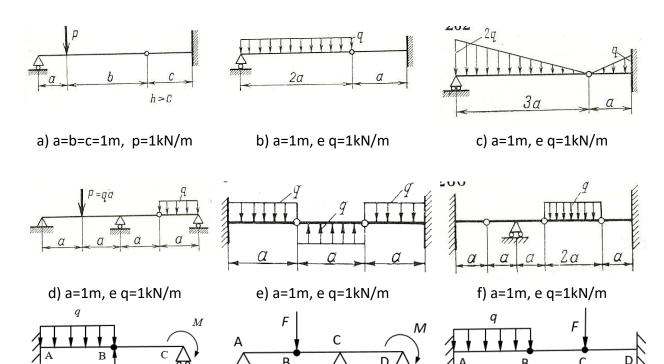

s) a=3m, e q=1kN/m


t) a=1m, e q=1kN/m


u) a=1m, e q=1kN/m

v) l=6m, a=1m, e p=1kN

x) a=1m, e q=1kN/m


z) a=1m, e q=1kN/m

fernandobatista.net Pág. 3 de 48

RESISTÊNCIA DOS MATERIAIS

1.2 Vigas Gerber

1.2.1 Calcule as reações dos apoios, trace os diagramas dos esforços cortantes, esforços normais e momentos fletores das seguintes vigas Gerber, vigas com rótulas.

- g) AB=BC=1m, q=2kN/m, F=2kN e M=1kNm
- h) AB=BC=CD=1m, F=2kN e

M=3kNm

i) AB=BC=CD=1m, q=2kN/m

Formulário

$$\begin{split} V_i(x) &= V_{i-1}(a) + P_i + \int_a^x \omega_i(x) \; dx \; ; \quad a \leq x < b \\ M_i(x) &= M_{i-1}(a) + M_i + \int_a^x V_i(x) \; dx \; ; \quad a \leq x < b \end{split}$$

fernandobatista.net Pág. 4 de 48

RESISTÊNCIA DOS MATERIAIS

2. Elasticidade linear

2.1 Carregamento Axial - Tensão normal

- **2.1.1** A coluna da Figura 2.1 está submetida a uma força axial de 8 kN no seu topo. Determine a tensão normal média que atua sobre a seção a-a.
- **2.1.2** Calcule a tensão normal no "Piston rod" da Figura 2.2 quando o pedal sofre uma força indicada.

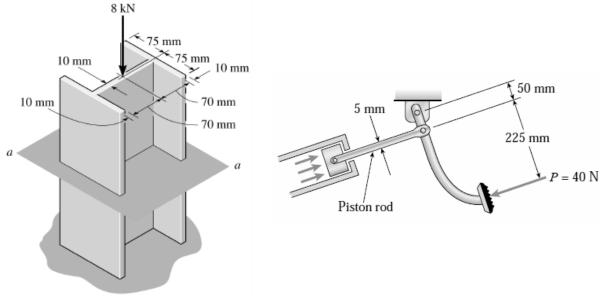
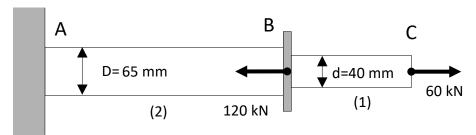
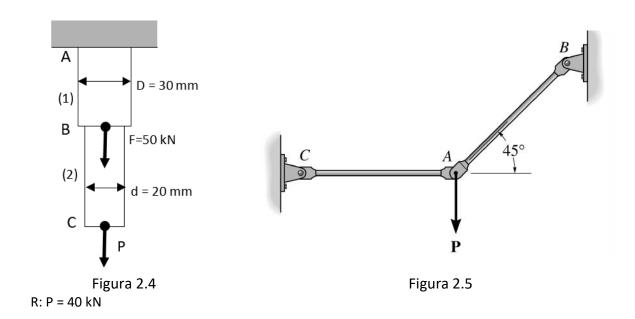


Figura 2.1 Figura 2.2

2.1.3 Duas barras cilíndricas maciças são soldadas no ponto B, como mostra a Figura 2.3. Determine a tensão normal no ponto médio de cada barra.




Figura 2.3

R: $\sigma^{(1)}$ = 47,8 MPa, $\sigma^{(2)}$ = -18,1 MPa

fernandobatista.net Pág. 5 de 48

RESISTÊNCIA DOS MATERIAIS

- **2.1.4** As barras cilíndricas maciças da Figura 2.4 estão unidas no ponto B. Determine a intensidade da força P que provoca nas barras o mesmo valor da tensão normal.
- **2.1.5** As duas hastes de alumínio da Figura 2.5 suportam a carga vertical P = 20 kN. Determine os diâmetros mínimos se o esforço de tração admissível para o alumínio for 150 MPa.

Os arames de aço AB e AC da

2.1.6 Figura 2.6 suportam a massa de 200 kg. Supondo que a tensão normal admissível é 130 MPa, determine o diâmetro mínimo para cada arame.

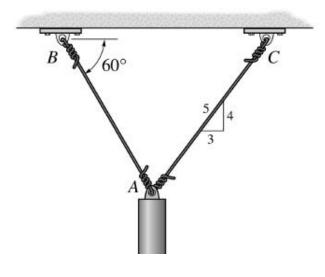


Figura 2.6

fernandobatista.net Pág. 6 de 48

RESISTÊNCIA DOS MATERIAIS

2.2 Tensão de corte

- **2.2.1** A placa da Figura 2.7 é fixada a uma base de madeira por meio de três parafusos de diâmetro 22mm. Calcular a tensão média de corte nos parafusos para uma carga P=120 kN.
- **2.2.2** Uma articulação com um pino da Figura 2.8 deve resistir a uma força de tração de P = 60 kN. Calcular o diâmetro do pino e a espessura mínima da chapa. Tensão de corte admissível 50 MPa e tensão normal admissível 120 MPa.

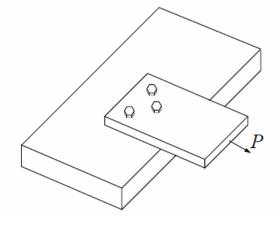


Figura 2.7

R.:105,2 MPa

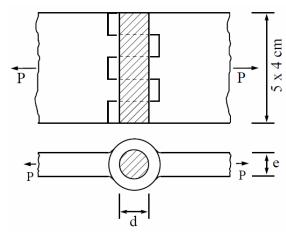


Figura 2.8

R.: d = 19,55 mm; e = 6,25 mm

- **2.2.3** A barra de madeira mostrada da Figura 2.9 está suportada por uma haste de aço de 10 mm de diâmetro presa na parede. A barra suporta uma carga vertical de 5 kN.
- a) Calcule a tensão de corte média da haste na parede
- b) Calcule a tensão de corte média ao longo das duas áreas sombreadas da barra, uma das quais está identificada como abcd.

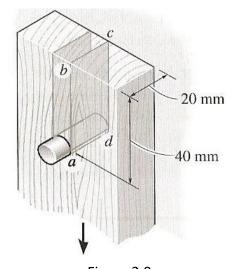


Figura 2.9

fernandobatista.net Pág. 7 de 48

RESISTÊNCIA DOS MATERIAIS

2.2.4 Considere a seguinte chaveta 3 x 6 mm (d x a) de seção sujeita ao esforço indicado na Figura 2.10. A sua tensão de corte admissível é de 53 MPa. Determine qual será o comprimento mínimo para a chaveta.

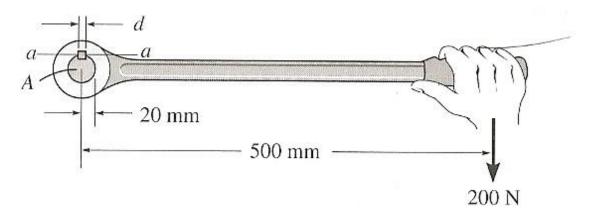
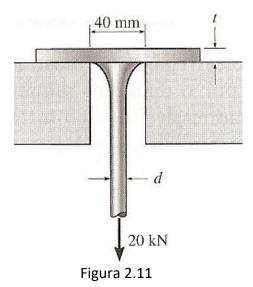



Figura 2.10

R: L > 31,4 mm

2.2.5 O tirante da Figura 2.11 está apoiado em sua extremidade por um disco circular fixo como mostra a figura. Se a haste passa por um furo de 40 mm de diâmetro, determine o diâmetro mínimo requerido da haste e a espessura mínima do disco necessários para suportar uma carga de 20 kN. A tensão normal admissível da haste é 60 MPa, e a tensão de corte admissível do disco é 35 MPa.

R: d > 20,6 mm; t > 4,55 mm

fernandobatista.net Pág. 8 de 48

RESISTÊNCIA DOS MATERIAIS

2.3 Tensão normal e tensão de corte

- **2.3.1** Determine a tensão normal e a tensão de corte do parafuso de diâmetro de 20mm da Figura 2.12.
- **2.3.2** O eixo da Figura 2.13 está sujeito a carga axial de 30 kN. O colar C está rigidamente ligado ao eixo. Determine a tensão normal e a tensão de corte no colar.

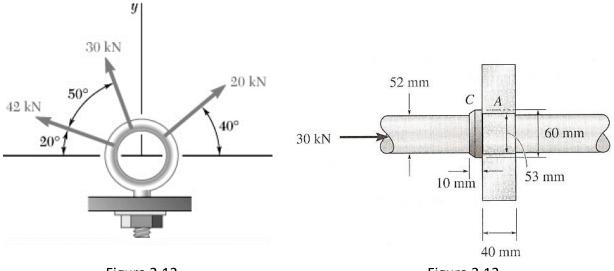


Figura 2.12 Figura 2.13 R: σ = 48,3 MPa; τ = 18 MPa

2.3.3 A amostra de madeira da Figura 2.14 tem 50 mm de largura e está submetida a uma tração de 10 kN. A madeira tem uma σ adm = 12 MPa e τ adm = 1,2 MPa. Determinar as dimensões b e t.

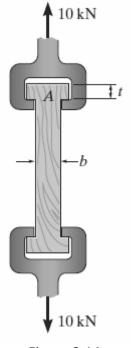


Figura 2.14

R: *t* > 83mm; *b* > 16,5mm

fernandobatista.net Pág. 9 de 48

RESISTÊNCIA DOS MATERIAIS

- **2.3.4** Duas peças de madeira da Figura 2.15 tem uma secção transversal retangular uniforme de 76x127mm, elas são unidas através de uma emenda simplesmente colada. A tensão normal admissível na junta é de 600 kPa, P=3560 N.
- a) Determine a tensão normal e a tensão de corte na referida emenda
- b) Determine a maior carga axial P que pode ser aplicada e a correspondente tensão de corte.

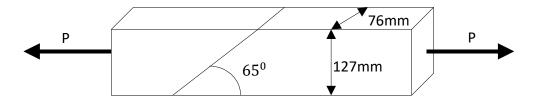


Figura 2.15

R:

- a) σ = 302 kPa, τ = 141,3 kPa;
- b) P= 7050,5 N
- **2.3.5** Na Figura 2.16 cada barra BD e CE tem de secção 8x30 mm, e cada pino tem um diâmetro de 12 mm. Determine as tensões normais nas barras e as tensões de corte nos pinos.

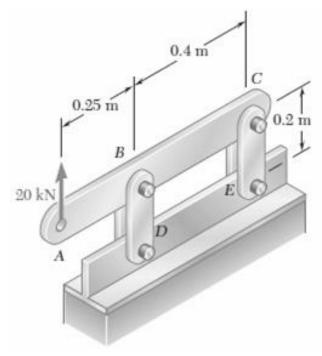


Figura 2.16

fernandobatista.net Pág. 10 de 48

RESISTÊNCIA DOS MATERIAIS

- **2.3.6** A Figura 2.17 representa uma estrutura formada por 2 elementos acoplados por 3 pinos na união e nos suportes.
- a) Será a resistência do elemento BC a adequada? (Tensão normal admissível do aço = 165 MPa)
- b) Por razões de custo e peso, optou-se por produzir o elemento BC em alumínio (Tensão normal admissível = 100 MPa). Qual deverá ser o diâmetro do elemento?
- c) Verifique se os diâmetros dos 3 pinos são apropriados. (Tensão de corte admissível do aço = 80 MPa)

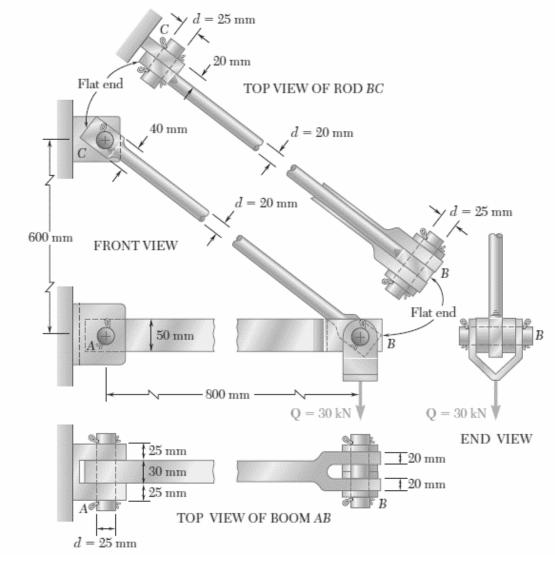
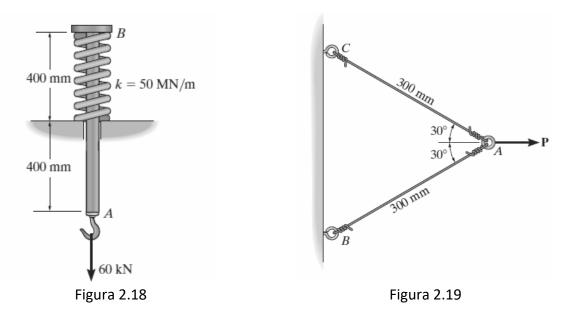


Figura 2.17

R:

a) σ_{BC} = 159,15 MPa

b) d > 17,8 mm


c) σ_A = 40,7 MPa, σ_B = 36,7 MPa e σ_C = 101,9 MPa

fernandobatista.net Pág. 11 de 48

RESISTÊNCIA DOS MATERIAIS

2.4 Lei de Hooke

- **2.4.1** Numa barra de alumínio de 12mm de diâmetro são feitas duas marcas distanciadas de 250mm. Determinar o módulo de elasticidade do alumínio usado, se para a força de 600N a distância entre as marcas é de 250,18mm.
- **2.4.2** A barra AB da Figura 2.18 com um diâmetro 20mm, está sujeita a uma força vertical e é feita de um aço com E=210GPa. Determine o deslocamento do ponto A.
- **2.4.3** A argola A da Figura 2.19 está ligada por dois cabos (d=4mm) e sofre um deslocamento horizontal de 2mm devido a força P. Determine a tensão normal em cada cabo. Considere E=120GPa.

2.4.4 Determine o deslocamento do ponto D da barra da Figura 2.20. Considere E=200GPa.

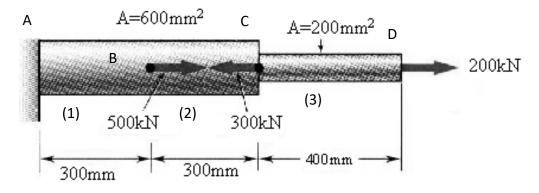


Figura 2.20

R: δ_D = 2,75 mm

fernandobatista.net Pág. 12 de 48

RESISTÊNCIA DOS MATERIAIS

2.4.5 Determine o deslocamento do ponto B e C da Figura 2.21. Dados: Diâmetro de 30mm e E=200GPa.

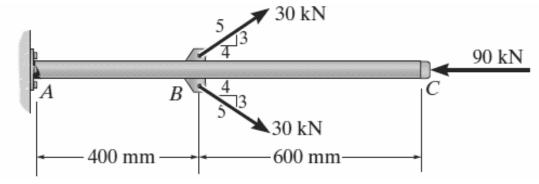


Figura 2.21

- **2.4.6** O fio de aço CD de 2mm de diâmetro da Figura 2.22 tem o seu comprimento ajustado de forma que, se nenhum carregamento atuar, existe uma distância de 1,5mm entre a extremidade B da viga rígida ABC e o ponto de contacto E.
- a) Determine em que ponto deve ser colocado um bloco de 20kg sobre a viga de modo a causar contacto entre B e E. Sabe-se que E=200GPa.
- b) Determinar a massa do bloco que provoca o encosto entre B e E. Sabe-se que x = 0.16 m.

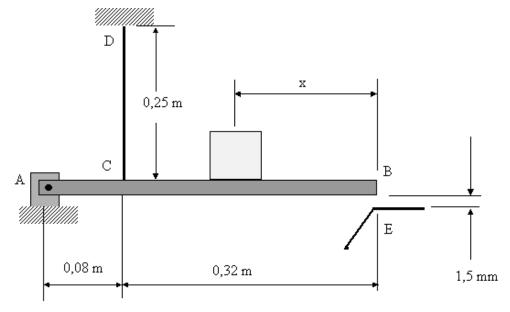
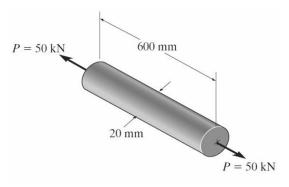


Figura 2.22

R:

a) x=0,0926m;

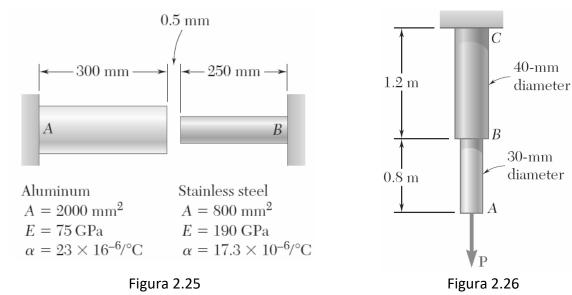

b) m=25,62kg

fernandobatista.net Pág. 13 de 48

RESISTÊNCIA DOS MATERIAIS

2.5 Efeito da Temperatura

- **2.5.1** Determine a diferença de temperatura necessária aplicar à barra da Figura 2.23 para que não haja um aumento de comprimento. Dados: E = 200GPa e $\alpha = 16x10-6$ /°C.
- **2.5.2** A estrutura da Figura 2.24 é constituída por duas barras de 2m sujeita a um aumento de temperatura de 40°C. Determine o deslocamento vertical do ponto B. Dados: $\alpha = 17x10-6$ /°C.

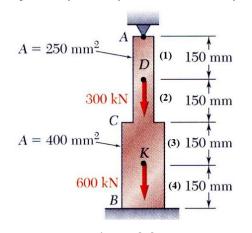


A 60° 60° C

Figura 2.23

Figura 2.24

- **2.5.3** Determine a diferença de temperatura necessária aplicar às duas barras da Figura 2.25 para que não haja folga entre elas.
- **2.5.4** Determine a diferença de temperatura necessária aplicar às duas barras da Figura 2.26 para que não haja um aumento de comprimento. Dados: P= 10 kN, E= 200GPa e α = 16x10-6 /°C.


- **2.5.5** Um arame de Alumínio de 30m de comprimento é submetido a uma tensão de tração de 70 MPa. Considerar E=70GPa e α = 23x10-6 / ^{o}C
- a) Determinar o alongamento do arame;
- b) De quantos graus seria necessário elevar a temperatura do arame para obter o mesmo alongamento.

fernandobatista.net Pág. 14 de 48

RESISTÊNCIA DOS MATERIAIS

2.6 Problemas estaticamente indeterminados

- **2.6.1** Determine as reações nos apoios A e B, para a barra de aço sujeita às cargas indicadas na Figura 2.27. E = 210 GPa.
- **2.6.2** A barra da Figura 2.28 de comprimento L e de área de secção transversal A1, com módulo de elasticidade E1, foi colocado dentro de um tubo com o mesmo comprimento L, mas de área de secção transversal A2 e módulo de elasticidade E2. Determine o deslocamento do ponto A quando uma força P é aplicada por meio de uma placa rígida.

(2)

(1)

(2)

A

Figura 2.27 R: RB= 577 kN; RA= 323 kN

R:
$$\delta_A = \frac{PL}{A_1E_1 + A_2E_2}$$
 Figura 2.28

2.6.3 A barra da Figura 2.29 é constituída por aço (E_a =200 GPa) e por latão (E_l =105 GPa), está sujeita a uma força P de 10 kN. Calcule a tensão normal em cada um dos materiais e a sua variação de comprimento (considere que os materiais estão solidários).

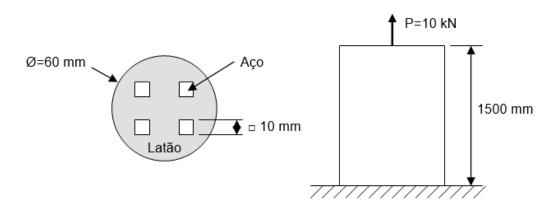


Figura 2.29

fernandobatista.net Pág. 15 de 48

RESISTÊNCIA DOS MATERIAIS

2.6.4 A haste CE de 10 mm de diâmetro e a haste DF de 15 mm de diâmetro são ligadas à barra rígida ABCD como mostra a Figura 2.30. Sabendo-se que as hastes são de alumínio com E = 70 GPa. Determine a força provocada em cada haste pelo carregamento indicado e o deslocamento do ponto A.

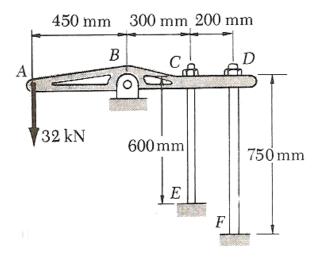
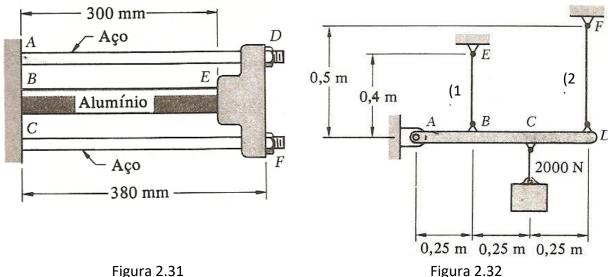
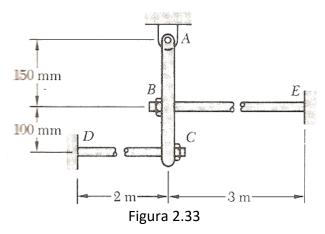



Figura 2.30

R: F_{CE} = 8 kN, F_{DF} =24 kN; δ_A = 1,31 mm

- 2.6.5 O bloco DEF da Figura 2.31 é ligado à barra BE por meio de dois parafusos, AD e CF. A barra tem 40 mm de diâmetro e os parafusos têm 20 mm de diâmetro. O passo da rosca de cada parafuso é de 2 mm e, após terem sido ajustados, as porcas sofrem um deslocamento axial igual a um quarto de volta. Sabendo-se que para o aço E = 200 GPa e para o alumínio E = 70 GPa, determine a tensão em cada parafuso.
- 2.6.6 Os arames de aço BE e DF com 25 mm de diâmetro (E = 200 GPa) da Figura 2.32 estão esticados na ocasião da aplicação da força de 2000 N em C. Considerando rígida a barra AD, determine a tensão em cada arame e o deslocamento do ponto C.

R: σ = 124 MPa


R: $\sigma^{(1)}$ = 994 kPa, $\sigma^{(2)}$ = 2385 kPa, δ = 4 μm

fernandobatista.net Pág. 16 de 48

RESISTÊNCIA DOS MATERIAIS

2.6.7 Na Figura 2.33 os parafusos de aço BE e CD (E=200 GPa), com 16 mm de diâmetro, são roscados nas extremidades com rosca de 2,5 mm de passo. Após ser perfeitamente ajustada, a rosca em C é apertada uma volta, determine a tensão no parafuso CD e o deslocamento do ponto C da barra rígida ABC.

R: σ =48,4 MPa e δ = 2mm

- **2.6.8** As barras da Figura 2.34 estão sujeitas a uma diferença de temperatura de +120 OC. Determine a variação de comprimento da barra de aço (300 mm).
- **2.6.9** As barras da Figura 2.35 estão encastradas em A e em E. Determine o deslocamento axial da secção C. Dados: ES=200 GPa e EB=105 GPa

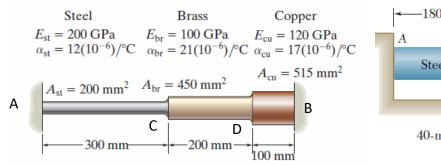


Figura 2.34

R: RB= 88267 N; δ = 0,23 mm

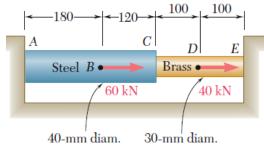


Figura 2.35

R: RE= 37191 N; δ = 0,0463 mm

fernandobatista.net Pág. 17 de 48

RESISTÊNCIA DOS MATERIAIS

- **2.6.10** As barras da Figura 2.36 foram impostas uma diferença de temperatura de (+) 200 0C e uma força F no meio da barra 2. Determine as reações nos apoios A e B, a tensão normal na barra 1 e o comprimento final da barra 3. Dados: A1 = 2000 mm2, A2 = 1000 mm2, A3 = 250 mm2, E = 70 GPa, α = 23x10-6 /°C, L1 = L2 = L3 = 1,6 m, d = 2 mm e F = 1000N.
- **2.6.11** A barra rígida CDE da Figura 2.37 é presa ao apoio E por um pino, e se apoia no cilindro de latão BD de 30 mm de diâmetro. Um parafuso de 22 mm de diâmetro passa por um furo na barra em C, e é fixo por uma porca simplesmente ajustada. A montagem, feita à temperatura de 20 C, não existe inicialmente nenhuma tensão na estrutura. A temperatura do cilindro de latão é aumentada para 50°C, enquanto o parafuso tem sua temperatura mantida constante. Determine as tensões no cilindro. Dados: Barra AC: aço, E = 200GPa; Cilindro BD: latão, E = 105GPa, α = 18.8x10-6 / $^{\circ}$ C.

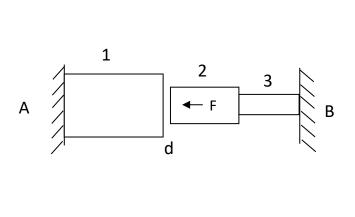


Figura 2.36

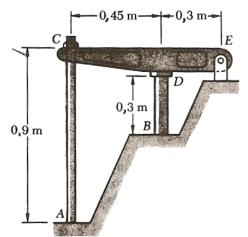


Figura 2.37

R.: 40,3 MPa

fernandobatista.net Pág. 18 de 48

RESISTÊNCIA DOS MATERIAIS

2.7 Lei de Hooke generalizada

- **2.7.1** Uma barra homogénea e isotrópica tem 500 mm de comprimento e 16 mm de diâmetro. Sob a ação da carga axial de 12 kN, o comprimento sofreu um aumento de 300 μ m e o seu diâmetro reduz-se de 2,4 μ m. Determinar o módulo de elasticidade e o coeficiente de Poisson.
- **2.7.2** Um círculo de diâmetro d=230mm da Figura 2.38 é desenhado numa placa, sem tensões, de espessura t=20mm. Aplicam-se então forças que atuam no plano da placa, causando tensões normais. Dados: σ_x = 84 MPa, σ_z = 140 MPa, ν =0,3 e E=70Gpa.
- a) Determine as variações que ocorrem no diâmetro AB; no diâmetro CD e na espessura da placa.
- b) Calcule a variação de volume.

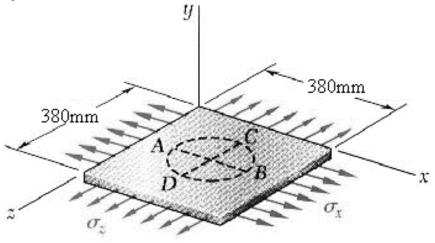


Figura 2.38

- **2.7.3** O bloco de magnésio da Figura 2.39 com E=45GPa e v=0,35 está sujeito a σ_x = -180MPa.
- a) Determinar a $\sigma_{\rm V}$ de forma a que a altura do bloco não se altere.
- b) Determinar a variação de área da face ABCD nas condições da alinha a).
- c) Determinar a variação de volume nas condições da alinha a).

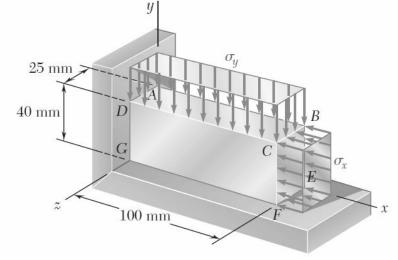
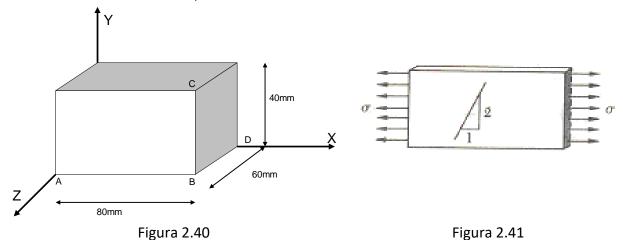



Figura 2.39

fernandobatista.net Pág. 19 de 48

RESISTÊNCIA DOS MATERIAIS

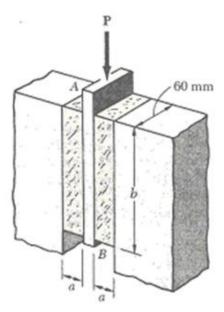
- **2.7.4** A Figura 2.40 mostra um bloco de aço submetido a ação de uma pressão uniforme em todas as faces. Mediu-se a variação do comprimento AB que foi de -24 μ m. E=200GPa e v=0,29. Determinar:
- a) A variação de comprimento das outras duas arestas;
- b) A pressão p aplicada às faces.
- c) Variação de volume por unidade de volume.
- d) A variação de volume ΔV , quando se aplica ao bloco uma pressão hidrostática p=180 MPa
- **2.7.5** Uma placa de alumínio da Figura 2.41 é submetida a uma força axial centrada que provoca uma tensão normal, σ . Uma linha reta de inclinação 2:1 é desenhada na placa de alumínio antes da aplicação da força (Ver Figura). Determinar a inclinação da linha quando a tensão for σ =125 MPa. Considere E=70GPa e ν =0,33.

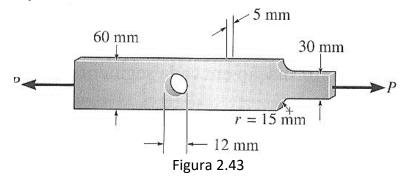
2.7.6 Uma unidade de amortecimento de vibrações (Figura 2.42) é construída utilizando dois blocos de borracha dura colados à placa AB e dois suportes fixos. As especificações de projeto indicam que uma força vertical e centrada P=27 kN deve causar uma deflexão vertical de 2mm na placa AB. Determine o menor valor admissível para os lados a e b dos blocos. Para a borracha utilizada

2.7.7 Determine o tensor das extensões, a extensão volumétrica e módulo de elasticidade de volume. Dados: E=200GPa e ν =0,3.

considere au_{adm} =1.5 MPa e G=18 MPa.

$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} 20 & 12 & 15 \\ 25 & 18 & 0 \\ 15 & 0 & 0 \end{bmatrix} MPa$$




Figura 2.42

fernandobatista.net Pág. 20 de 48

RESISTÊNCIA DOS MATERIAIS

2.8 Concentração de tensões

2.8.1 Determine a tensão normal máxima desenvolvida na barra da Figura 2.43 quando esta é submetida a uma tração P = 8 kN.

- **2.8.2** Determine a força máxima P que pode ser aplicada ao provete da Figura 2.44. Dados: tensão normal admissível = 200MPa.
- **2.8.3** Determine o raio rf da Figura 2.45 deforma que a tensão máxima verificada seja igual à tensão máxima no furo A.

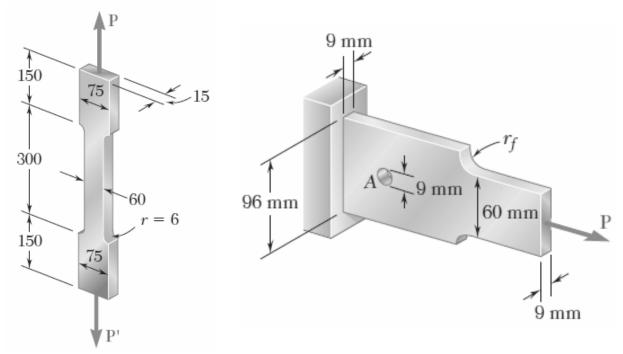


Figura 2.44 Figura 2.45

fernandobatista.net Pág. 21 de 48

RESISTÊNCIA DOS MATERIAIS

2.9 Estado Triaxial – Tensões e Direções Principais

2.9.1 Num determinado ponto de um material o estado de tensão é caracterizado pelo seguinte tensor das tensões num sistema de eixos [XYZ]. Dados: E = 210 GPa, v = 0.3.

$$\begin{bmatrix} \sigma_{ij} \end{bmatrix} = \begin{bmatrix} 40 & 25 & 15 \\ 25 & -60 & -10 \\ 15 & -10 & 30 \end{bmatrix}$$

- a) Represente o estado de tensão.
- b) Calcule as tensões principais e as respetivas direções principais.
- c) Calcule a tensão média.
- d) Calcule a tensão de corte máxima.
- e) Calcule as extensões principais.
- f) Calcule o tensor hidrostático e o tensor de desvio das tensões.
- g) Determine o vetor tensão que atua no plano que passa pelo ponto cuja a normal tem l=1/3 e m=2/3.
- h) Calcule o valor da tensão normal σ e da tensão de corte τ , num plano cuja normal faz ângulos α = 48° e β = 71° com os eixos Ox e Oy, respetivamente.
- **2.9.2** Considere um estado de extensão num cubo de 10 mm de aresta.

Dados:
$$\varepsilon_{xx} = \varepsilon_{yy} = 800\mu$$
; $\varepsilon_{zz} = 400\mu$; $\gamma_{xx} = \gamma_{xz} = -600\mu rad$; $E = 200GPa~e~v = 0.3$

- a) Determine o tensor das tensões e represente o estado de tensão.
- b) Determine a equação característica do estado de tensão.
- c) Determine a tensão média e a variação de volume do cubo.

fernandobatista.net Pág. 22 de 48

RESISTÊNCIA DOS MATERIAIS

2.10 Estado Biaxial - Circulo de Mohr

2.10.1 Um elemento está sujeito a um estado plano de tensão dado por:

$$\sigma_{xx} = -50MPa$$
; $\sigma_{yy} = 10MPa \ e \ \tau_{xy} = 40MPa$

Determine a tensão normal e a tensão de corte que atuam num elemento rodado com um ângulo de θ = 30°.

2.10.2 Considere o estado de tensão plana dado por:

$$\sigma_{xx} = -30MPa$$
; $\sigma_{yy} = 30MPa~e~\tau_{xy} = -20MPa$

- a) Determine as tensões principais e a respetiva orientação.
- b) Determinar a tensão de corte máxima e a respetiva orientação.
- c) Trace o círculo de Mohr das tensões o mais completo possível.

2.10.3 Considere um bloco de aço paralelepipédico, com E=200GPa e ν =0,3 sujeito as tensões:

$$\sigma_{xx} = -20MPa$$
; $\sigma_{yy} = -20MPa$ e $\tau_{xy} = 20MPa$

- a) Calcule a extensão volumétrica.
- b) Determine as extensões principais e a deformação angular máxima.
- c) Trace o círculo de Mohr das tensões o mais completo possível.
- 2.10.4 Considere um elemento material de uma barra de secção A sujeita a uma carga axial P.
- a) Trace o círculo de Mohr das tensões o mais completo possível.
- b) Represente o estado de tensão de um elemento rodado a 45° e a 60°.
- **2.10.5** Um determinado ponto de uma estrutura está sujeito a um estado plano de tensão indicado na Figura 2.46. Represente o estado de tensão no plano AB e o estado de tensão nos planos principais.

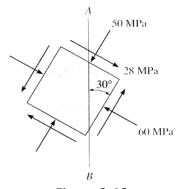


Figura 2.46

- **2.10.6** Um estado plano de tensão é constituído apenas por uma tensão normal $\sigma_{xx} = 56MPa$ e uma tensão de corte XY positiva que não é conhecida. Sabendo que a tensão normal máxima é de 70 MPa, determine a tensão de corte desconhecida e a tensão de corte máxima.
- **2.10.7** Considere o seguinte estado de extensão plana. Com E=200GPa e ν =0,3:

$$\varepsilon_{xx} = 200\mu$$
; $\varepsilon_{yy} = -200\mu \ e \ \gamma_{xy} = 300\mu rad$

- a) Determine as extensões principais e a deformação angular máxima.
- b) Trace o círculo de Mohr das tensões o mais completo possível.

fernandobatista.net Pág. 23 de 48

RESISTÊNCIA DOS MATERIAIS

3. Torção

3.1 Secções circulares

- **3.1.1** Um momento de torção T = 4000Nm é aplicado a um cilindro maciço de aço com 400mm de comprimento e um diâmetro de 60mm. E=210 GPa, ν =0,3. Determine:
- a) Tensão de corte máxima.
- b) Tensão de corte num ponto que se situa numa circunferência de 15mm de raio.
- c) O ângulo de rotação da secção de uma das extremidades em relação à outra.
- **3.1.2** O veio oco AB da Figura 3.1, de comprimento 0,5m com um diâmetro interior de 60mm e um diâmetro exterior de 80mm, está sujeito às duas cargas de 80N indicadas na figura. Considere E=210GPa, $\nu=0,3$. Determine:
- a) Tensão de corte máxima na secção C.
- b) O ângulo de rotação da secção B em relação à secção A.

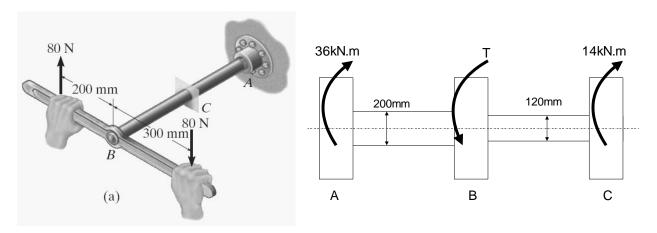


Figura 3.1 Figura 3.2

- **3.1.3** Considere um veio maciço encastrado numa das suas extremidades.
- a) Determinar o momento de torsor T que pode ser aplicado a esse veio maciço de 80mm de diâmetro sem exceder a tensão de corte admissível de 60MPa;
- b) Resolver a alínea anterior adotando um veio de secção oca com a mesma massa e de 80mm de diâmetro interno.
- **3.1.4** Para um tubo de comprimento 1,5m e diâmetro externo e interno de 60 e 40mmm respetivamente, determine o valor do momento de torção máximo a aplicar de modo a que o ângulo de torção não exceda 20 e a tensão de corte máxima não ultrapasse os 90 MPa. Adoptar G=80 GPa.
- **3.1.5** Determinar a tensão de corte máxima nos veios maciços AB e BC da Figura 3.2.

fernandobatista.net Pág. 24 de 48

RESISTÊNCIA DOS MATERIAIS

- **3.1.6** Um veio maciço de 30mm de diâmetro da Figura 3.3 é utilizado para transmitir um binário a duas rodas dentadas. Determinar a tensão de corte máxima no veio e o angulo de rotação entre as secções A e B. Dados G=80GPa.
- **3.1.7** O projeto preliminar de um eixo de transmissão da Figura 3.4 levou à escolha de um veio BC de secção oca com diâmetro interno de 100mm e externo de 120mm. Sendo a tensão admissível do material dos veios de 130 MPa. Adotar G=80 GPa.
- a) Avalie a resistência do veio BC.
- b) Calcule o diâmetro d.
- c) Calcule o ângulo de rotação da secção A em relação a secção D.

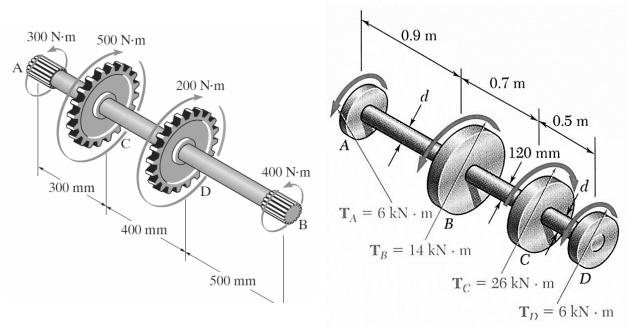
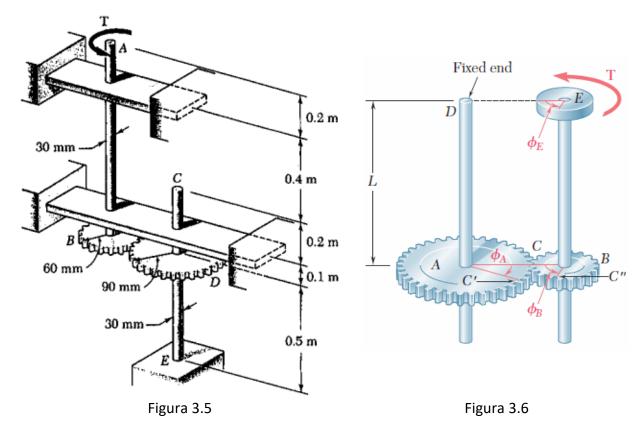



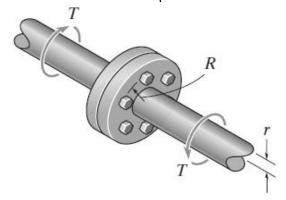
Figura 3.4 Figura 3.4

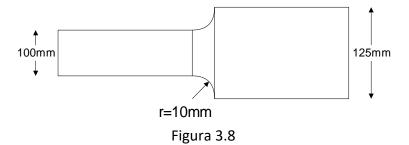
fernandobatista.net Pág. 25 de 48

RESISTÊNCIA DOS MATERIAIS

- **3.1.8** Dois veios maciços da Figura 3.5 tem um diâmetro de 30 mm estão ligados por 2 rodas dentadas. Determine a rotação da secção A depois de estar sujeito a um momento torsor de 200 Nm. G= 77 Pa.
- **3.1.9** A secção D da Figura 3.6 está encastrada, determine o angulo de rotação da secção E. Dados: T=50Nm, $D_A=300mm$, $D_B=200$ mm, d=40mm, L=1m e G=80GPa.

3.1.10 O veio maciço de raio r da Figura 3.7 transmite um momento torsor a um segundo veio por meio de duas flanges que estão ligadas por 6 parafusos. Os parafusos estão sobre uma circunferência de raio R. Determine o diâmetro dos parafusos para que a tensão corte máxima no veio maciço seja igual a tensão de corte máxima nos parafusos. Considere R=2r.




Figura 3.7

fernandobatista.net Pág. 26 de 48

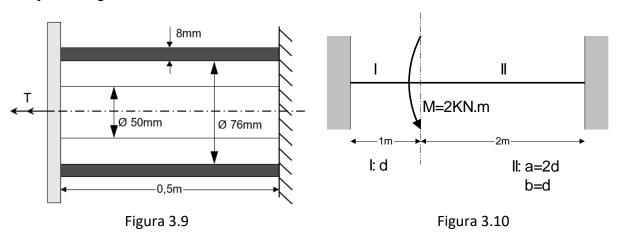
RESISTÊNCIA DOS MATERIAIS

3.2 Concentração de tensões

3.2.1 Um eixo de secção variável da Figura 3.8 gira à velocidade de 450 rpm. Determinar a máxima potência que pode ser transmitida sem ultrapassar a tensão de 45MPa.

3.3 Veios de transmissão

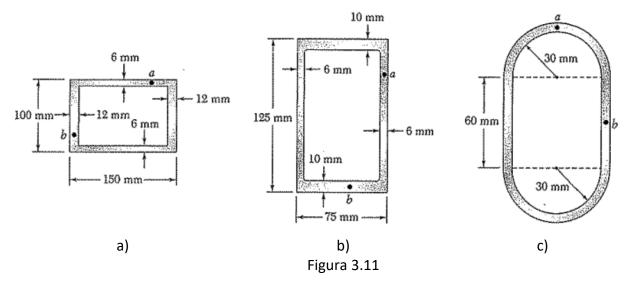
- **3.3.1** Um veio maciço é usado para transmitir 250cv de potência a 900 rpm sem exceder uma tensão de corte de 250MPa, ou um ângulo de torção de 3o. O comprimento do veio é de 2m, considere G=80GPa e 1cv = 735,5W, calcule o diâmetro do veio.
- **3.3.2** Um eixo é constituído por um tubo de aço de 50mm de diâmetro externo e deve transmitir 100kW de potência a uma frequência de 20Hz. Determinar a espessura do tubo para que a tensão máxima de corte não exceda 60MPa.
- **3.3.3** Dimensionar um eixo para transmitir uma potência de 10cv a 30Hz. A tensão de corte máxima é de 55MPa.
- **3.3.4** O veio maciço de aço tem 3 m de comprimento e diâmetro de 50 mm transmite 35 kW de potência de um motor para um gerador. Determine a menor velocidade angular que o eixo pode ter se o ângulo de rotação admissível for de 1o. O módulo de elasticidade transversal do veio é igual a 75 GPa.


fernandobatista.net Pág. 27 de 48

RESISTÊNCIA DOS MATERIAIS

3.4 Problemas híper-estáticos

- **3.4.1** Considere um veio simplesmente encastrado sujeito a um momento torsor T. O veio é constituído por dois materiais diferentes. Sejam Ga e Gb os módulos de elasticidade transversal do material envolvente e do material interior respetivamente. Obtenha uma expressão para as tensões de corte em ambos os materiais em função do momento torsor aplicado.
- **3.4.2** Um veio de aço e um tubo de alumínio estão ligados a um apoio fixo e a um disco rígido, como mostra a Figura 3.9. Sabendo que as tensões iniciais são iguais a zero, determine o momento torsor máximo que pode ser aplicado ao disco admitindo que a tensão de corte admissível para o alumínio é 70MPa e para o aço 120MPa. (Gaço=80MPa e Galuminio=27MPa).
- **3.4.3** Considere a seguinte viga duplamente encastrada da Figura 3.10. Admitindo que a tensão máxima no tramo de secção circular é de 3,5MPa. Determine a tensão de corte máxima no tramo de secção retangular.



fernandobatista.net Pág. 28 de 48

RESISTÊNCIA DOS MATERIAIS

3.5 Secções não circulares

- **3.5.1** Considere 3 veios sujeitos a um T= 3000 Nm, um com secção circular maciça de diâmetro d, outro com uma secção quadrada maciça de lado d e outro de secção retangular de dimensões d/2 x 2d. G=80GPa.
- a) Ao assumir a tensão de corte admissível de 100 MPa, determine a dimensão *d* para os 3 veios e compare percentualmente as áreas das secções.
- b) Ao assumir um ângulo máximo de 2° , determine a dimensão d para os 3 veios e compare percentualmente as áreas das secções.
- **3.5.2** É aplicado um momento torsor T=6KNm a cada uma das 3 secções da Figura 3.11. Determine a tensão de corte nos pontos a e b de cada secção.

- **3.5.3** Considere o seguinte perfil de paredes finas da Figura 3.12. (G=2,8x106 Ncm-2)
- a) Determine qual é a dimensão que deve ter o perfil representado para que o ângulo unitário de rotação não exceda 0,017 rad/m quando sujeito a um momento torsor de 8500kNcm.
- b) Qual a tensão máxima instalada.

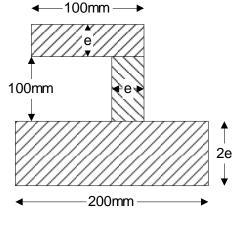
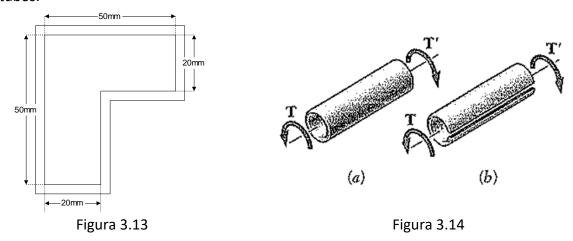
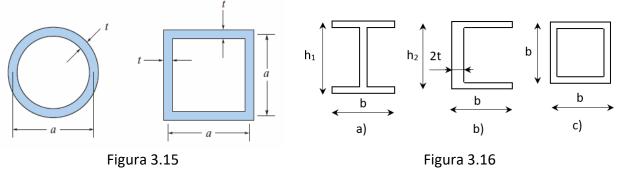



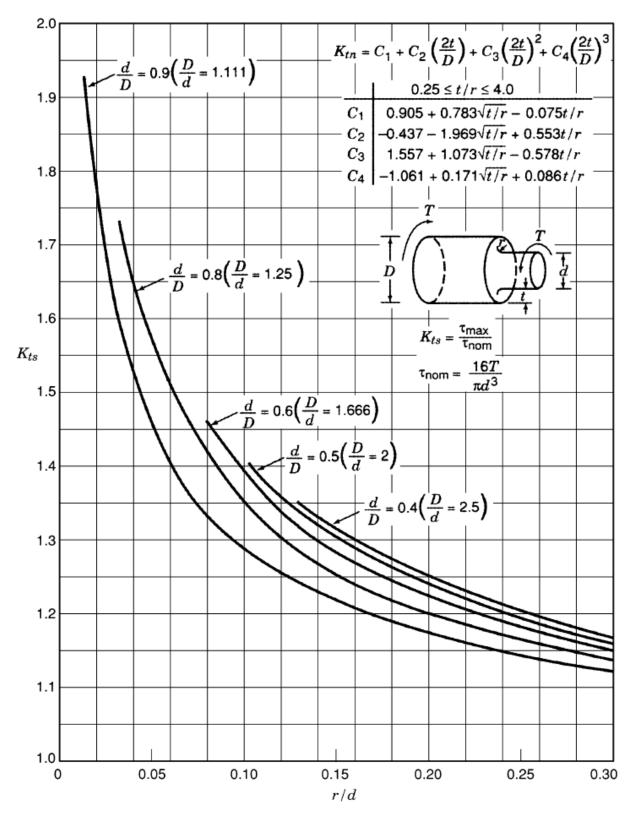
Figura 3.12


fernandobatista.net Pág. 29 de 48

RESISTÊNCIA DOS MATERIAIS

- **3.5.4** Uma barra de secção vazada com a secção transversal indicada na Figura 3.13 é formada por uma lâmina metálica de 1,5mm de espessura. Determinar o maior momento torsor que pode ser aplicado à barra se a tensão não pode exceder a 2,5MPa.
- **3.5.5** Dois tubos de paredes finas, com espessura de parede t e raio r suportam dois momentos torsores iguais, Figura 3.14. Um dos tubos foi cortado longitudinalmente em todo o seu comprimento (b). Determine a relação entre as tensões de corte e os ângulos de rotação entre os dois tubos.

- **3.5.6** Na Figura 3.15 estão duas secções de paredes finas. Determine a razão entre as tensões de corte e os ângulos de rotação das duas secções.
- **3.5.7** Considere 3 barras de paredes finas sujeitas a um momento torsor T, Figura 3.16. As secções tem uma espessura geral t=3mm, b=200mm e as secções têm a mesma área A. A tensão de corte admissível dos materiais é 100 MPa e G= 80 GPa. Determine e compare os momentos torsores máximos e os ângulos de torção máximos.

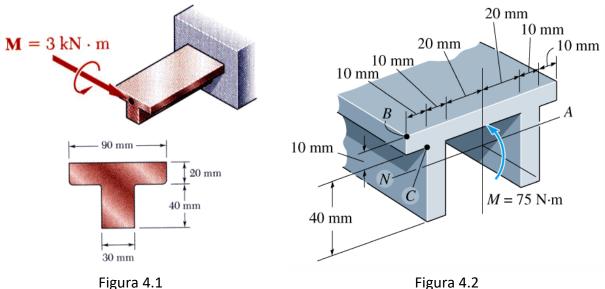

3.6 Torção composta

3.6.1 Um veio com diâmetro de 100 mm está simplesmente encastrado. O veio está sujeito a um momento torsor de 6kNm e uma carga de tração de 10 kN. Determine a tensão de corte máxima e a tensão normal máxima de um ponto na superfície do veio.

fernandobatista.net Pág. 30 de 48

RESISTÊNCIA DOS MATERIAIS

3.7 Gráfico de concentração de tensões


fernandobatista.net Pág. 31 de 48

RESISTÊNCIA DOS MATERIAIS

4. Flexão

4.1 Flexão Pura

- **4.1.1** A viga simplesmente encastrada da Figura 4.1 ficou submetido à ação do momento fletor M, sabendo que E= 210 GPa determine:
- a) As tensões máximas de tração e compressão;
- b) O raio de curvatura da peça fletida.
- **4.1.2** Determine a tensão normal máxima que ocorre na viga da Figura 4.2.

rigura 4.1 rigura 4.2

4.1.3 Foram propostas duas soluções para o projeto de uma viga, Figura 4.3. Determinar qual delas suportará um momento M = 150 kNm com a menor tensão normal de flexão.

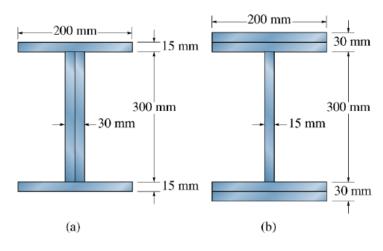


Figura 4.3

fernandobatista.net Pág. 32 de 48

RESISTÊNCIA DOS MATERIAIS

4.2 Flexão Simples

4.2.1 Determine a tensão normal e a tensão de corte máxima provocada pelo esforço cortante nas secções A e B, Figura 4.4. Diâmetro: 50 mm.

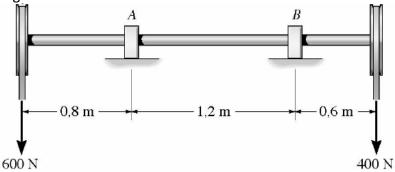


Figura 4.4

- **4.2.2** A viga da Figura 4.5 tem uma seção transversal retangular.
- a) Determinar a maior carga P que pode ser suportada de modo que a tensão normal de flexão na viga não exceda σ_{adm} = 10MPa.
- b) Determine a tensão de corte máxima provocada pelo esforço cortante para a carga P calculada na alinha anterior.

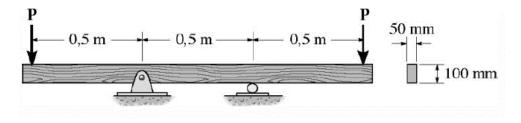


Figura 4.5

4.2.3 Trace o estado de tensão do ponto A da Figura 4.6.

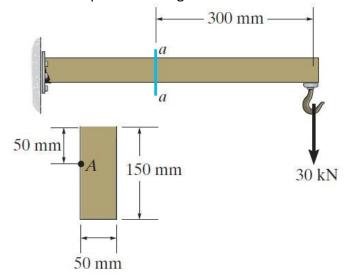


Figura 4.6

fernandobatista.net Pág. 33 de 48

RESISTÊNCIA DOS MATERIAIS

4.2.4 Determine a orientação da tensão principal máxima dos 5 pontos (x, y) da Figura 4.7: A(10;-35), B(20;-20), C(30;0), D(40;20) e E(50;35). Dados: P=10 kN, c=40mm, b=10mm.

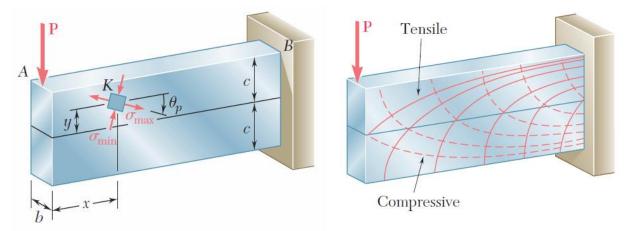
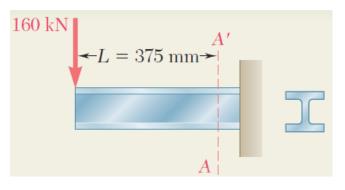



Figura 4.7

4.2.5 Trace o círculo de Mohr do estado de tensão do ponto a e b da Figura 4.8. (slide)

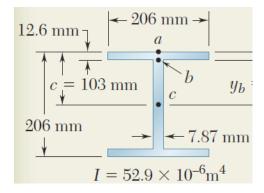


Figura 4.8

4.2.6 A viga simplesmente encastrada da Figura 4.9 está sujeita a uma carga de 10 kN. Determine a tensão normal e a tensão de corte do ponto a da secção n-n.

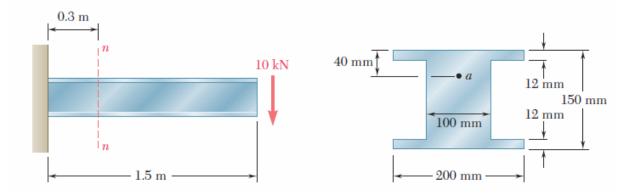


Figura 4.9

fernandobatista.net Pág. 34 de 48

RESISTÊNCIA DOS MATERIAIS

4.3 Flexão Composta

4.3.1 As tensões admissíveis na secção a-a da Figura 4.10 são 40 MPa à tração e 80 MPa à compressão.

Determine o valor máximo da carga P.

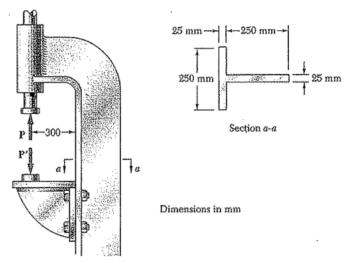
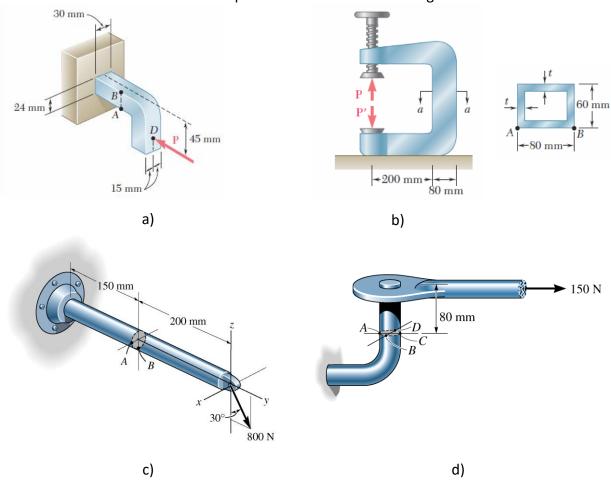
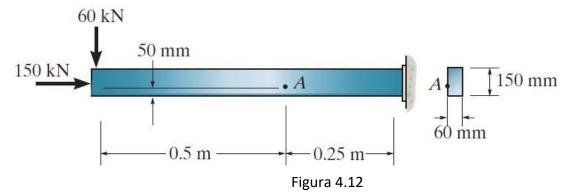


Figura 4.10

4.3.2 Determine a tensão normal no ponto A e B das 4 alíneas da Figura 4.11. P = 20kN e t =10mm.




Figura 4.11

fernandobatista.net Pág. 35 de 48

RESISTÊNCIA DOS MATERIAIS

4.3.3 Trace o estado de tensão do ponto A da Figura 4.12.

4.3.4 Determine a tensão normal no ponto C da Figura 4.13. (slide)

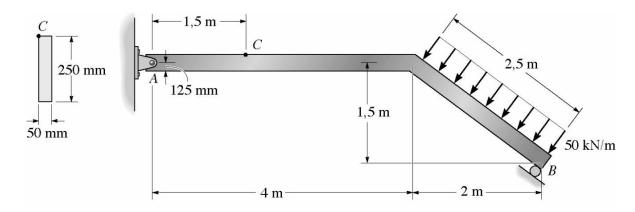
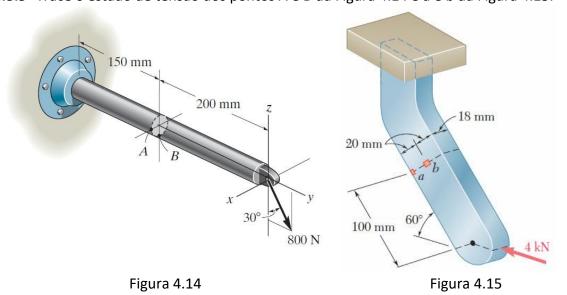



Figura 4.13

4.3.5 Trace o estado de tensão dos pontos A e B da Figura 4.14 e a e b da Figura 4.15.

fernandobatista.net Pág. 36 de 48

RESISTÊNCIA DOS MATERIAIS

4.4 Flexão Desviada

4.4.1 Determine a tensão normal máxima na secção A da Figura 4.16.

Dados: I_z =28,445x10⁶mm⁴, I_y =13,345x10⁶mm⁴ e P=2000N.

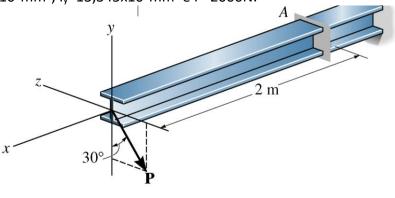


Figura 4.16

- **4.4.2** As 4 secções da Figura 4.17 estão sujeitas a uma carga axial de tração de 1000 N e ao momento fletor indicado.
- a) Determine a tensão normal no ponto A, B e D.
- b) Determine a equação da linha neutra das 4 secções.

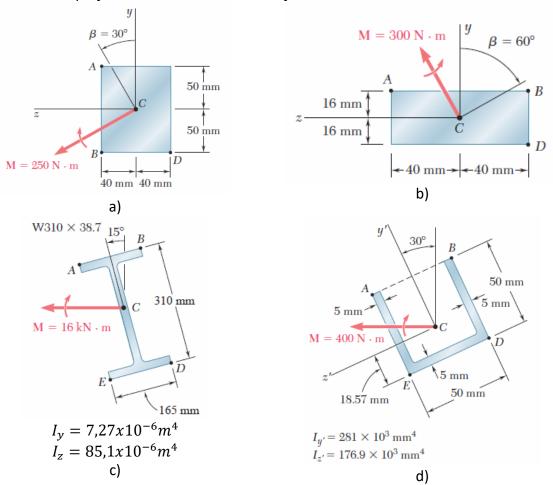


Figura 4.17

fernandobatista.net Pág. 37 de 48

RESISTÊNCIA DOS MATERIAIS

4.4.3 Trace o estado de tensão dos pontos A e B da Figura 4.18 (slide) e trace o estado de tensão dos pontos H e K da Figura 4.19.

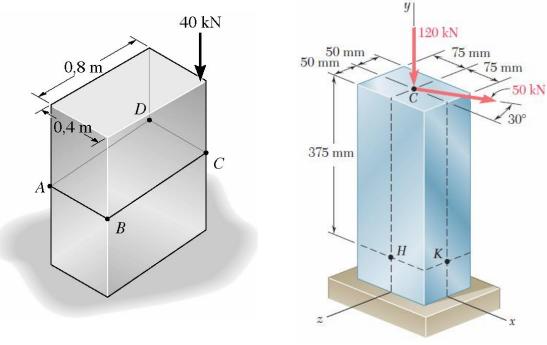
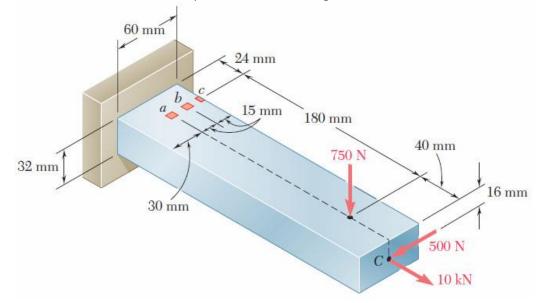
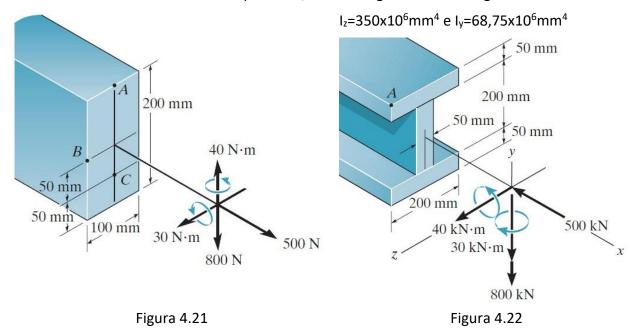


Figura 4.18

Figura 4.19

4.4.4 Trace o estado de tensão dos pontos a, b e c da Figura 4.20.




Figura 4.20

fernandobatista.net Pág. 38 de 48

RESISTÊNCIA DOS MATERIAIS

4.4.5 Trace o estado de tensão dos pontos A, B e C da Figura 4.21 e da Figura 4.22.

4.4.6 Trace o estado de tensão dos pontos A e B da Figura 4.23 com d=40mm.

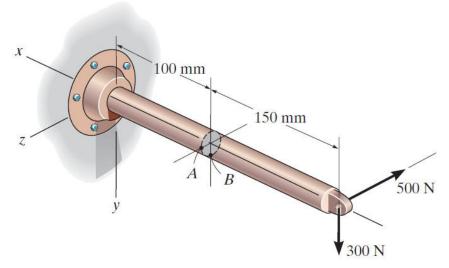


Figura 4.23

fernandobatista.net Pág. 39 de 48

RESISTÊNCIA DOS MATERIAIS

4.5 Equação da Linha Elástica

4.5.1 Determine o deslocamento vertical máximo das vigas da Figura 4.24. Dados: E=210GPa, $I_z=60x10^6$ mm⁴.

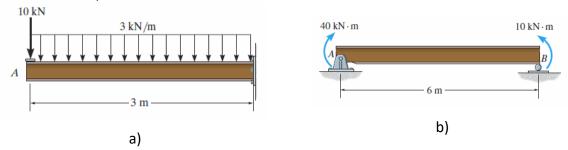


Figura 4.24

4.5.2 Determine o deslocamento vertical dos pontos de coordenada x_1 e x_2 das 4 vigas da Figura 4.25. Dados: L=2m, a=50cm x1= 30cm, x2= 80cm, E=210GPa, Iz=70x106 mm4, P=20kN, w=10kN/m e M0=5kNm.

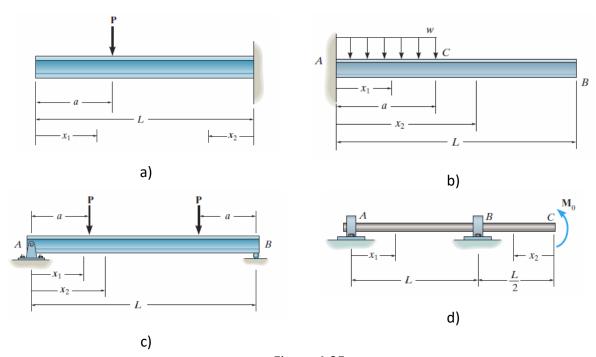


Figura 4.25

fernandobatista.net Pág. 40 de 48

RESISTÊNCIA DOS MATERIAIS

4.6 Flexão Composta com Torção

4.6.1 Trace o estado de tensão e o Círculo de Mohr do ponto K da Figura 4.26. (slide)

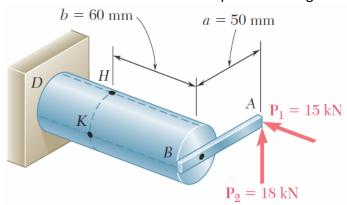


Figura 4.26

4.6.2 Trace o estado de tensão do ponto A da Figura 4.27 e Figura 4.28.

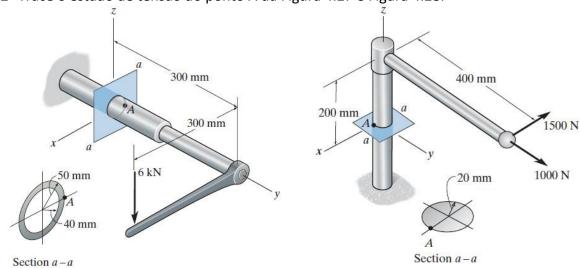
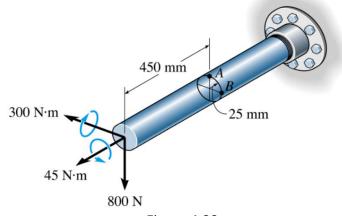
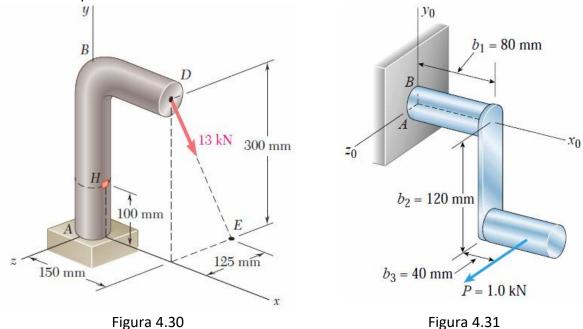


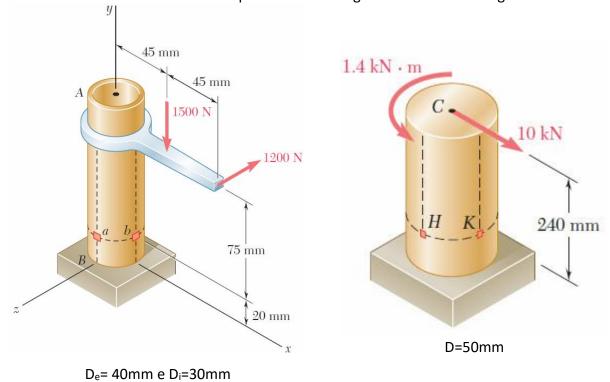
Figura 4.27 Figura 4.28

4.6.3 Trace o estado de tensão dos pontos A e B da Figura 4.29.




Figura 4.29

fernandobatista.net Pág. 41 de 48



RESISTÊNCIA DOS MATERIAIS

4.6.4 Os veios das Figura 4.30 e Figura 4.31 tem um d=20 mm, trace o estado de tensão dos pontos H e dos pontos A e B.

4.6.5 Trace o estado de tensão dos pontos a e b da Figura 4.32 e H e K da Figura 4.33.

fernandobatista.net Pág. 42 de 48

Figura 4.33

Figura 4.32

RESISTÊNCIA DOS MATERIAIS

4.6.6 O veio maciço AB da Figura 4.34 gira a 480 rpm transmitindo 30 kW do motor M às máquinas a si ligadas pelas engrenagens G e H. Em G são transmitidos 20 kW e em H 10 kW. Determinar segundo o menor diâmetro permitido para o veio AB sabendo que a tensão de corte admissível é 50 MPa. Despreze o Esforço Transverso. (slide)

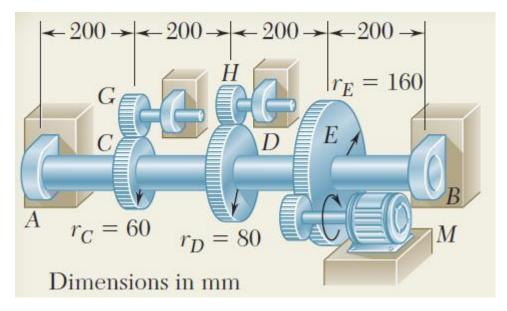


Figura 4.34

4.6.7 Determine o diâmetro mínimo do veio da Figura 4.35. Dados: $\tau_{admin} = 50 MPa$ (slide)

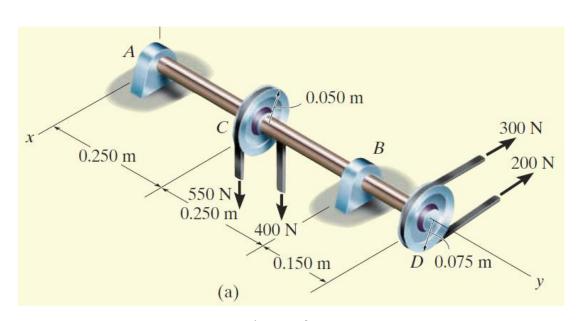
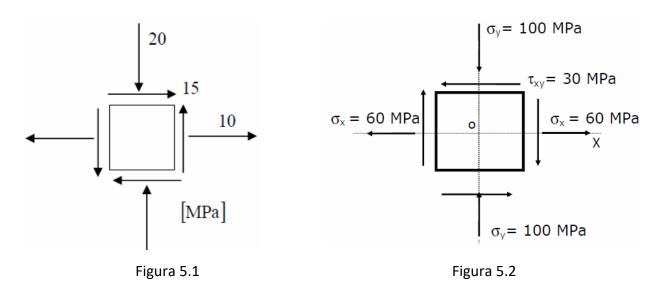


Figura 4.35

R: d > 23,3 mm

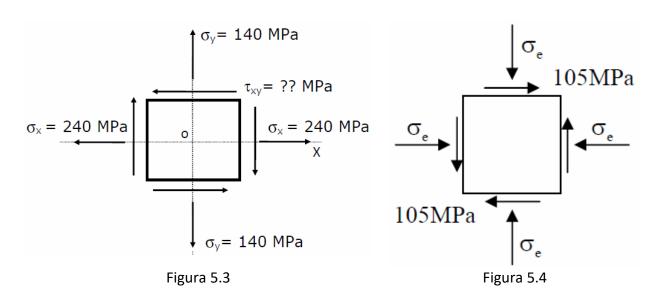
fernandobatista.net Pág. 43 de 48


RESISTÊNCIA DOS MATERIAIS

5. Critérios de cedência

- **5.1.1** Assuma as tensões principais de valores:
- a) 10MPa, -10MPa (tensão plana),
- b) 20MPa, 10 MPa (tensão plana).

Avalie a segurança relativamente aos critérios de Tresca e von Mises, sabendo que $\sigma_c=20~MPa$. Esboce as superfícies de cedência e marque o estado de tensão correspondente.


- **5.1.2** Considere o estado plano de tensões indicado na Figura 5.1. Sabendo que a tensão de cedência é de 300 MPa, calcule o coeficiente de segurança de acordo com o critério de Tresca e de von Mises, esboce as superfícies de cedência indicando o estado de tensão. Esboce as superfícies de cedência e marque o estado de tensão correspondente.
- **5.1.3** Considerando que o material tem uma tensão de cedência de 160 MPa determine, utilizando os critérios de Tresca e von Mises, se há ou não há cedência do componente solicitado pelo estado plano de tensões representado na Figura 5.2. Esboce as superfícies de cedência e marque o estado de tensão correspondente.

fernandobatista.net Pág. 44 de 48

RESISTÊNCIA DOS MATERIAIS

- **5.1.4** Um componente estrutural de aço, com tensão de cedência de 300 MPa, fica submetido ao estado de tensões indicado na Figura 5.3. Determine, usando o critério de cedência de von Mises, se ocorre cedência quando a tensão de corte é
- a) 60MPa
- b) 120 MPa
- c)130 MPa.
- **5.1.5** O estado plano de tensões desenhado na Figura 5.4 corresponde a um ponto de uma peça de material dúctil de tensão de cedência 331MPa. Determine o intervalo dos valores possíveis de σ_e (mantendo o sentido) para as quais a peça estar neste ponto em condições de segurança utilizando o critério de Treca e o de von Mises. Compare os dois intervalos obtidos.

fernandobatista.net Pág. 45 de 48

RESISTÊNCIA DOS MATERIAIS

6. Instabilidade estrutural - Flambagem

6.1.1 Quais são as cargas máximas axiais de compressão que podem ser aplicadas a dois tubos em liga de alumínio. As suas extremidades permitem rotação livre.

Dados: L1 = 4m, L2 = 2m, Re= 45mm, Ri= 40mm, σ_c = 270MPa, E=70GPa.

6.1.2 Cada uma das colunas de secção circular de diâmetro 20mm tem os apoios indicados na Figura 6.1. Determine a carga crítica para cada uma delas. σ_c = 220MPa, E=200GPa.

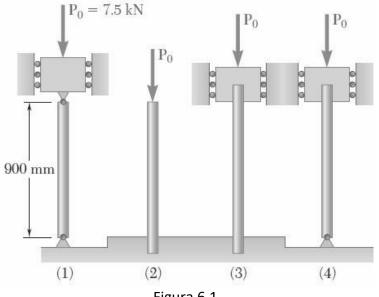
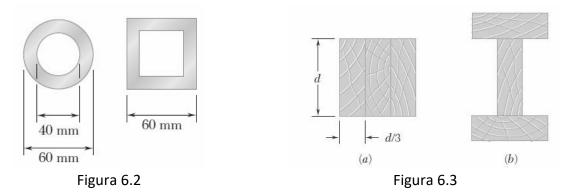



Figura 6.1

- **6.1.3** Uma coluna longa com extremidades articuladas tem secção quadrada e tem 2m de altura. A coluna é constituída por madeira e na direção axial do perfil temos um E= 13GPa e uma tensão de cedência de 12 MPa à compressão. Determine as dimensões da secção da coluna.
- **6.1.4** Considere 4 colunas longas com a mesma área de secção. A primeira e a segunda estão representadas na Figura 6.2, as outras duas são secções maciças, uma circular e a outra quadrangular. Determine cada uma das cargas críticas e a relação entre elas. L=4m, E=210 GPa e σ_c =250MPa.
- **6.1.5** Foram construídas duas colunas longas a partir de 3 barras de secção retangulares. As barras foram colocadas conforme está representado na Figura 6.3. Determine a relação entre cada uma das cargas críticas.

fernandobatista.net Pág. 46 de 48

RESISTÊNCIA DOS MATERIAIS

- **6.1.6** As duas colunas longas da Figura 6.4 têm secções com a mesma área. Determine a relação entre cada uma das cargas críticas. E=210 GPa e σ_c =250MPa.
- **6.1.7** A coluna longa de alumínio AB da Figura 6.5 suporta uma barra que está sujeita a uma força Q.. Verifique a resistência da coluna. E=200 GPa e σ_c =250MPa.

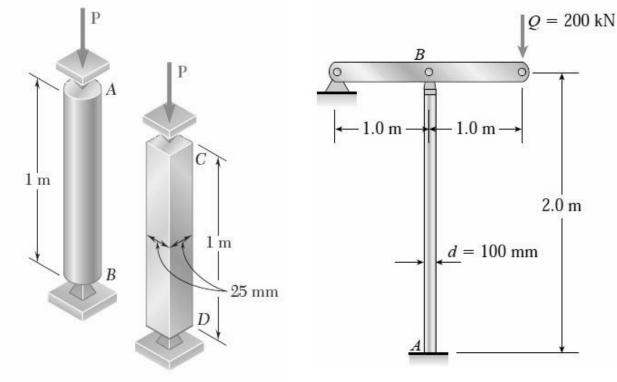


Figura 6.4 Figura 6.5

6.1.8 Figura 6.6Na Figura 6.6 determine a força máxima P que pode ser aplicada. Dados: d_{AB} = 25mm, E=200 GPa e σ_c =250MPa.

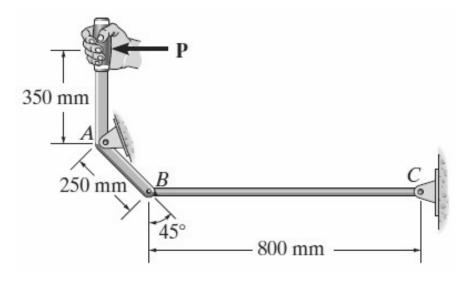


Figura 6.6

fernandobatista.net Pág. 47 de 48

RESISTÊNCIA DOS MATERIAIS

7. Referências

James. M. Gere, Mechanics-of-Materials, 6º Edição, 2004 Ferdinand P. Beer, Jr., Resistência dos Materiais, MacGraw-Hill, 2012 R. C. Hibbeler, Mechanics of Materials, 8th Edition, Pearson Prentice Hall, 2011

fernandobatista.net Pág. 48 de 48