Canga histribrida muma supaticie cinculan
congor tringulen

Ponto de aplicacs da funga rusultante y

(2)

$$
R^{2}=x^{2}+y^{2} \Rightarrow x=\sqrt{R^{2}-y^{2}}
$$

h

$$
(1) \times(z) \rightarrow Q(y)=2 x \times z=\frac{h}{R} y \times 2 \sqrt{R^{2}-y^{2}}
$$

$$
z=\frac{h}{R} y
$$

Calculo de \bar{y}

$$
\leftrightarrow P y=\int_{0}^{R} y Q(y) d y=2 \frac{h}{R} \int_{0}^{R} y^{2} \sqrt{R^{2}-y^{2}} d y=\frac{\pi h R^{3}}{8}
$$

$$
\bar{y}=\frac{P_{y}}{P} P=\int_{0}^{R} Q(y) d y=2 \frac{h}{R} \int_{0}^{R} y \sqrt{R^{2}-y^{2}} d y=\frac{2 h R^{2}}{3}
$$

$$
\Rightarrow \bar{y}=\frac{\pi h R^{3}}{8} \times \frac{3}{2 h R^{2}}=\frac{3 \pi R}{16}
$$

Force rusultarte

Momento flefor Num veio
Capculo de h, os ha

Equilibio de moomentos $\Rightarrow P_{1} \times \bar{y}_{1}=P_{2} \times \bar{y}_{2}$

$$
\begin{aligned}
& \Rightarrow \frac{2 h_{1} R_{1}^{2}}{3} \times \frac{3 \pi R_{1}}{16}=\frac{2 h_{2} R_{2}^{2}}{3} \times \frac{3 \pi R_{2}}{16} \\
& \Rightarrow h_{1} R_{1}^{3}=h_{2} R_{2}^{3}
\end{aligned}
$$

